【題目】如圖,等腰三角形的底邊長為6,面積是36,腰的垂直平分線分別交,邊于點,若點邊的中點,點為線段上一動點,則周長的最小值____

【答案】15

【解析】

連接AD,由于△ABC是等腰三角形,點DBC邊的中點,故ADBC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AC的垂直平分線可知,點C關(guān)于直線EF的對稱點為點A,故AD的長為CM+MD的最小值,由此即可得出結(jié)論.

解:連接AD


∵△ABC是等腰三角形,點DBC邊的中點,
ADBC,
SABC=BCAD=×6×AD=36,解得AD=12,
EF是線段AC的垂直平分線,
∴點C關(guān)于直線EF的對稱點為點A,
AD的長為CM+MD的最小值,

∴△CDM的周長最短=CM+MD+CD=AD+BC=12+×6=12+3=15
故答案為:15

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中學(xué)初三(1)班共有40名同學(xué),在一次30秒跳繩測試中他們的成績統(tǒng)計如下表:

跳繩數(shù)/個

81

85

90

93

95

98

100

人 數(shù)

1

2

8

11

5

將這些數(shù)據(jù)按組距5(個)分組,繪制成如圖的頻數(shù)分布直方圖(不完整).

(1)將表中空缺的數(shù)據(jù)填寫完整,并補全頻數(shù)分布直方圖;

(2)這個班同學(xué)這次跳繩成績的眾數(shù)是 個,中位數(shù)是 個;

(3)若跳滿90個可得滿分,學(xué)校初三年級共有720人,試估計該中學(xué)初三年級還有多少人跳繩不能得滿分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,EF,G,H分別是邊ABBC,CDDA的中點.請你添加一個條件,使四邊形EFGH為矩形,應(yīng)添加的條件是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,

(1)寫出A、B、C的坐標(biāo).

(2)以原點O為中心,將△ABC圍繞原點O逆時針旋轉(zhuǎn)180°得到△A1B1C1,畫出△A1B1C1

(3)求(2)中C到C1經(jīng)過的路徑以及OB掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解題:

按照一定順序排列著的一列數(shù)稱為數(shù)列,排在第一位的數(shù)稱為第1項,記為,依次類推,排在第位的數(shù)稱為第項,記為

一般地,如果一個數(shù)列從第二項起,每一項與它前一項的比等于同一個常數(shù),那么這個數(shù)列叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母表示().如:數(shù)列1,3,9,27,…為等比數(shù)列,其中,公比為

則:(1)等比數(shù)列3,6,12,…的公比_____________,第4項是________________

2如果一個數(shù)列, , , ,…是等比數(shù)列,且公比為,那么根據(jù)定義可得到:

, , ,……

, , ,

由此可得:an=____________________(用a1q的代數(shù)式表示)

(3)若一等比數(shù)列的公比q=2,第2項是10,請求它的第1項與第4項.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,CDAB,垂足為D,點EBC上,EFAB,垂足為F,∠1=2

1)試說明DGBC的理由;

2)如果∠B=34°,且∠ACD=47°,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】岳飛是我國古代宋朝的民族英雄,曾任通泰鎮(zhèn)撫史、兼泰州知州.據(jù)說在泰州抗擊金兵期間,有一次曾向?qū)㈩I(lǐng)們講了如下一個布陣圖,如圖4是一座城池,在城池的四周設(shè)了八個哨所,一共由24個衛(wèi)士把守,按直線算,每邊都有11個人,后來由于軍情發(fā)生變化,連續(xù)四次給哨所增添兵力,每次增加4人,但要求在增加人員后,仍然保持每邊11個人把守.請問,兵力應(yīng)如何調(diào)整?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校研究性學(xué)習(xí)小組在研究有關(guān)二次函數(shù)及其圖象性質(zhì)的問題時,發(fā)現(xiàn)了兩個重要結(jié)論.一是發(fā)現(xiàn)拋物線y=ax2+2x+3a≠0),當(dāng)實數(shù)a變化時,它的頂點都在某條直線上;二是發(fā)現(xiàn)當(dāng)實數(shù)a變化時,若把拋物線y=ax2+2x+3的頂點的橫坐標(biāo)減少,縱坐標(biāo)增加,得到A點的坐標(biāo);若把頂點的橫坐標(biāo)增加,縱坐標(biāo)增加,得到B點的坐標(biāo),則A、B兩點一定仍在拋物線y=ax2+2x+3上.

1)請你協(xié)助探求出當(dāng)實數(shù)a變化時,拋物線y=ax2+2x+3的頂點所在直線的解析式;

2)問題(1)中的直線上有一個點不是該拋物線的頂點,你能找出它來嗎?并說明理由;

3)在他們第二個發(fā)現(xiàn)的啟發(fā)下,運用一般﹣一特殊﹣一般的思想,你還能發(fā)現(xiàn)什么?你能用數(shù)學(xué)語言將你的猜想表述出來嗎?你的猜想能成立嗎?若能成立請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中.直線y=﹣x+3與x軸交于點B,與y軸交于點C,拋物線y=ax2+bx+c經(jīng)過B,C兩點,與x軸負(fù)半軸交于點A,連結(jié)AC,A(-1,0)

(1)求拋物線的解析式;

(2)點P(m,n)是拋物線上在第一象限內(nèi)的一點,求四邊形OCPB面積S關(guān)于m的函數(shù)表達式及S的最大值;

(3)若M為拋物線的頂點,點Q在直線BC上,點N在直線BM上,Q,M,N三點構(gòu)成以MN為底邊的等腰直角三角形,求點N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案