【題目】如圖,△ABC內(nèi)接于⊙O,BC是⊙O的直徑,弦AF交BC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)D,連接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.
(1)求證:AD是⊙O的切線;
(2)若⊙O的半徑為5,CE=2,求EF的長(zhǎng).
【答案】
(1)解:∵BC是⊙O的直徑,
∴∠BAF+∠FAC=90°,
∵∠D=∠BAF,∠AOD=∠FAC,
∴∠D+∠AOD=90°,
∴∠OAD=90°,
∴AD是⊙O的切線;
(2)解:連接BF,
∴∠FAC=∠AOD,
∴△ACE∽△DCA,
∴ ,
∴ ,
∴AC=AE= ,
∵∠CAE=∠CBF,
∴△ACE∽△BFE,
∴ ,
∴ = ,
∴EF= .
【解析】(1)由BC是⊙O的直徑,得到∠BAF+∠FAC=90°,等量代換得到∠D+∠AOD=90°,于是得到結(jié)論;(2)連接BF,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論.
【考點(diǎn)精析】本題主要考查了相似三角形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn),PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,連接EF.給出下列五個(gè)結(jié)論:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正確的結(jié)論是___________________(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)△ABC與△A′B′C′在平面直角坐標(biāo)系中的位置如圖.
(1)分別寫出下列各點(diǎn)的坐標(biāo):A′ ; B′ ;C′ ;
(2)說明△A′B′C′由△ABC經(jīng)過怎樣的平移得到? .
(3)若點(diǎn)P(a,b)是△ABC內(nèi)部一點(diǎn),則平移后△A′B′C′內(nèi)的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為 ;
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,分別為邊的中點(diǎn),是對(duì)角線,過點(diǎn)作交的延長(zhǎng)線于點(diǎn).
(1)求證:;
(2)若,求證:四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形的兩條對(duì)角線的夾角為60度,對(duì)角線長(zhǎng)為15,則矩形的較短邊長(zhǎng)為( )
A. 12B. 10C. 7.5D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線PT與⊙O相切于點(diǎn)T,直線PO與⊙O相交于A,B兩點(diǎn).
(1)求證:PT2=PAPB;
(2)若PT=TB= ,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,AT是⊙O的切線,∠ABT=50°,BT交⊙O于點(diǎn)C,E是AB上一點(diǎn),延長(zhǎng)CE交⊙O于點(diǎn)D.
(1)如圖①,求∠T和∠CDB的大;
(2)如圖②,當(dāng)BE=BC時(shí),求∠CDO的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:平行四邊形ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程x2﹣mx+﹣=0的兩個(gè)實(shí)數(shù)根.
(1)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AB=10,BC=5,BN平分∠ABC交CD于點(diǎn)N,交AD的延長(zhǎng)線于點(diǎn)M,則下列結(jié)論:①DM=5;②線段BM、CD互相平分;③BD⊥AM;④△BCN是等邊三角形;⑤AN⊥BM,其中正確的有______________(填序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com