【題目】如圖,AB是⊙O的直徑,弦EF⊥AB,垂足為C,∠A=30°,連結(jié)BE,M為BE的中點,連結(jié)MF,過點F作直線FD∥AE,交AB的延長線于點D.
(1)求證:FD是⊙O的切線;
(2)若MF=,求⊙O的半徑.
【答案】(1)見解析;(2)⊙O的半徑為2.
【解析】
(1)連接,,如圖,利用等腰三角形的性質(zhì)得到.而,所以,再根據(jù)切線的性質(zhì)得即可;
(2)連接,如圖,利用圓周角定理得到.再證明得到.而,所以,設(shè)的半徑為,利用含30度的直角三角形三邊的關(guān)系得,然后根據(jù)勾股定理得到結(jié)論.
(1)證明:連接OE,OF,如圖1,
∵EF⊥AB,AB是⊙O的直徑,
∴∠DOF=∠DOE,
∵∠DOE=2∠A,∠A=30°,
∴∠DOF=60°,
∵∠D=30°,
∴∠OFD=90°.
∴OF⊥FD.
∴FD為⊙O的切線;
(2)連接OM.如圖2所示:
∵AB為⊙O的直徑,
∴O為AB中點,∠AEB=90°.
∵M為BE的中點,
∴OM∥AE,OM=AE,
∵∠A=30°,
∴∠MOB=∠A=30°.
∵∠DOF=2∠A=60°,
∴∠MOF=90°,
∴OM2+OF2=MF2.
設(shè)⊙O的半徑為r.
∵∠AEB=90°,∠A=30°,
∴BE=AB=r,AE=BE=r,
∴OM=AE=r,
∵FM=,
∴(r)2+r2=()2.
解得r=2(舍去負(fù)根),
∴⊙O的半徑為2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與y軸交于A點,過點A的直線與拋物線交于另一點B,過點B作BC⊥x軸,垂足為點C(3,0).
(1)求直線AB的函數(shù)關(guān)系式;
(2)動點P在線段OC上從原點出發(fā)以每秒一個單位的速度向C移動,過點P作PN⊥x軸,交直線AB于點M,交拋物線于點N. 設(shè)點P移動的時間為t秒,MN的長度為s個單位,求s與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)設(shè)在(2)的條件下(不考慮點P與點O,點C重合的情況),連接CM,BN,當(dāng)t為何值時,四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,BC=9, CA=12,∠ABC的平分線BD交AC與點D, DE⊥DB交AB于點E.
(1)設(shè)⊙O是△BDE的外接圓,求證:AC是⊙O的切線;
(2)設(shè)⊙O交BC于點F,連結(jié)EF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時經(jīng)過頂點C,D.若點C的橫坐標(biāo)為5,BE=3DE,則k的值為( 。
A. B. 3 C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,G為弦AE的中點,OG的延長線交⊙O于點D,連接BD交AE于點F,延長AE至點C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線;
(2)⊙O的半徑為10,tanA=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值為 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為的直徑,點C和點G是上的兩點,過點C作BG的垂線交BG的延長線于點D延長DC交A的延長線于點E,連接BC,交OD于點F,BC平分∠ABD.
(1)求證:CD是的切線;
(2)若,探索線段OF與FD的數(shù)量關(guān)系;
(3)連接AD,若,,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正確的結(jié)論有( ).
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“今有邑,東西七里,南北九里,各開中門,出東門一十五里有木,問:出南門幾何步而見木?”這段話摘自《九章算術(shù)》.意思是說:如圖,矩形城池ABCD,東邊城墻AB長9里,南邊城墻AD長7里,東門點E、南門點F分別是AB、AD中點,EG⊥AB,FH⊥AD,EG=15里,HG經(jīng)過A點,則FH=( )
A.1.2 里B.1.5 里C.1.05 里D.1.02 里
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com