【題目】折疊圓心為、半徑為的圓形紙片,使圓周上的某一點與圓心重合.對圓周上的每一點,都這樣折疊紙片,從而都有一條折痕.那么,所有折痕所在直線上點的全體為( )

A. 為圓心、半徑為的圓周 B. 為圓心、半徑為的圓周

C. 為圓心、半徑為的圓內(nèi)部分 D. 為圓心、半徑為的圓周及圓外部分

【答案】D

【解析】

折疊圓心為O,半徑為10cm的圓形紙片,圓周上的一點A與圓形O重合,此時折痕就是OA的垂直平分線,圓心O到折痕的最近距離是5cm,最遠距離為10cm,對圓周上的每一個點都這樣折疊,可以得到折痕上所有點形成的圖形.

解:折疊圓心為O,半徑為1cm的圓形紙片,當圓周上的點A與圓形O重合時,折痕就是OA的垂直平分線,圓心O到折痕的最近距離是5cm,最遠距離是10cm,對圓周上的每一個點都這樣折疊,所有折痕所在直線形成的圖形應是一個圓環(huán),圓環(huán)的圓心是O,小圓的半徑是5cm,大圓的半徑是10cm.

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩人在相同條件下完成了10次射擊訓練,兩人的成績?nèi)鐖D所示。

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均成績/環(huán)

中位數(shù)/環(huán)

方差/環(huán)

______

7

1.2

7

______

______

1)完成表格;

2)根據(jù)訓練成績,你認為選派哪一名隊員參賽更好?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,連接AE,CD,AECD交于點M,AEBC交于點N.

(1)求證:AE=CD;

(2)求證:AE⊥CD;

(3)連接BM,有以下兩個結(jié)論:①BM平分∠CBE;②MB平分∠AMD.其中正確的有   (請寫序號,少選、錯選均不得分).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子中裝有顏色不同的8個小球,其中紅球3個,黑球5個.

(1)先從袋中取出m(m>1)個紅球,再從袋中隨機摸出1個球,將摸出黑球記為事件A.請完成下列表格:

事件A

必然事件

隨機事件

m的值

(2)先從袋中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個球是黑球的概率是,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,在ABC中,∠A是銳角,點DE分別在AB,AC上,且∠DCB=∠EBCABECD相交于點O,探究BDCE之間的數(shù)量關系,并證明你的結(jié)論.

2)已知四邊形ABCD,連接AC、BD交于O,且滿足條件:AB+CDAD+BC,AB2+AD2BC2+DC2,請?zhí)骄?/span>ACBD的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點M(-3,2)分別作x軸、y軸的垂線與反比例函數(shù)y=的圖象交于A,B兩點,則四邊形MAOB的面積為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學舉辦網(wǎng)絡安全知識答題競賽,七、八年級根據(jù)初賽成績各選出5名選手組成代表隊參加決賽,兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.

平均分(分)

中位數(shù)(分)

眾數(shù)(分)

方差(分2

七年級

a

85

b

S七年級2

八年級

85

c

100

160

1)根據(jù)圖示填空:a   ,b   c   ;

2)結(jié)合兩隊成績的平均數(shù)和中位數(shù)進行分析,哪個代表隊的決賽成績較好?

3)計算七年級代表隊決賽成績的方差S七年級2,并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在大課間活動中,同學們積極參加體育鍛煉,小明就本班同學我最喜愛的體育項目進行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:

(1)該班共有_____名學生;

(2)補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,乒乓球部分所對應的圓心角度數(shù)為_____

(4)學校將舉辦體育節(jié),該班將推選5位同學參加乒乓球活動,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C,D在⊙O上,且AB=6,∠CAB=30°

求:(1)求∠ADC的度數(shù);

(2)如果OE⊥AC,垂足為E,求OE的長.

查看答案和解析>>

同步練習冊答案