【題目】如圖,正方形OABC的邊OA,OC在坐標軸上,點B的坐標為(﹣4,4).點P從點A出發(fā),以每秒1個單位長度的速度沿x軸向點O運動;點Q從點O同時出發(fā),以相同的速度沿x軸的正方向運動,規(guī)定點P到達點O時,點Q也停止運動.連接BP,過P點作BP的垂線,與過點Q平行于y軸的直線l相交于點D.BD與y軸交于點E,連接PE.設點P運動的時間為t(s).
(1)∠PBD的度數(shù)為 , 點D的坐標為(用t表示);
(2)當t為何值時,△PBE為等腰三角形?
(3)探索△POE周長是否隨時間t的變化而變化?若變化,說明理由;若不變,試求這個定值.
【答案】
(1)解:45°;(t,t)
(2)解:①若PB=PE,
由△PAB≌△DQP得PB=PD,
顯然PB≠PE,
∴這種情況應舍去.
②若EB=EP,
則∠PBE=∠BPE=45°.
∴∠BEP=90°.
∴∠PEO=90°﹣∠BEC=∠EBC.
在△POE和△ECB中,
∴△POE≌△ECB(AAS).
∴OE=CB=OC.
∴點E與點C重合(EC=0).
∴點P與點O重合(PO=0).
∵點B(﹣4,4),
∴AO=CO=4.
此時t=AP=AO=4.
③若BP=BE,
在Rt△BAP和Rt△BCE中,
∴Rt△BAP≌Rt△BCE(HL).
∴AP=CE.
∵AP=t,
∴CE=t.
∴PO=EO=4﹣t.
∵∠POE=90°,
∴PE=
= (4﹣t).
延長OA到點F,使得AF=CE,連接BF,如圖2所示.
在△FAB和△ECB中,
∴△FAB≌△ECB.
∴FB=EB,∠FBA=∠EBC.
∵∠EBP=45°,∠ABC=90°,
∴∠ABP+∠EBC=45°.
∴∠FBP=∠FBA+∠ABP
=∠EBC+∠ABP=45°.
∴∠FBP=∠EBP.
在△FBP和△EBP中,
∴△FBP≌△EBP(SAS).
∴FP=EP.
∴EP=FP=FA+AP
=CE+AP.
∴EP=t+t=2t.
∴ (4﹣t)=2t.
解得:t=4 ﹣4
∴當t為4秒或(4 ﹣4)秒時,△PBE為等腰三角形
(3)解:∵EP=CE+AP,
∴OP+PE+OE=OP+AP+CE+OE
=AO+CO
=4+4
=8.
∴△POE周長是定值,該定值為8
【解析】解:(1)如圖1,
由題可得:AP=OQ=1×t=t(秒)
∴AO=PQ.
∵四邊形OABC是正方形,
∴AO=AB=BC=OC,
∠BAO=∠AOC=∠OCB=∠ABC=90°.
∵DP⊥BP,
∴∠BPD=90°.
∴∠BPA=90°﹣∠DPQ=∠PDQ.
∵AO=PQ,AO=AB,
∴AB=PQ.
在△BAP和△PQD中,
∴△BAP≌△PQD(AAS).
∴AP=QD,BP=PD.
∵∠BPD=90°,BP=PD,
∴∠PBD=∠PDB=45°.
∵AP=t,
∴DQ=t.
∴點D坐標為(t,t).
故答案為:45°,(t,t).
(1)易證△BAP≌△PQD,從而得到DQ=AP=t,從而可以求出∠PBD的度數(shù)和點D的坐標.(2)由于∠EBP=45°,故圖1是以正方形為背景的一個基本圖形,容易得到EP=AP+CE.由于△PBE底邊不定,故分三種情況討論,借助于三角形全等及勾股定理進行求解,然后結合條件進行取舍,最終確定符合要求的t值.(3)由(2)已證的結論EP=AP+CE很容易得到△POE周長等于AO+CO=8,從而解決問題.
科目:初中數(shù)學 來源: 題型:
【題目】某公司倉庫本周內貨物進出的噸數(shù)記錄如下“”表示進庫,“”表示出庫;
日期 | 星期日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 |
噸數(shù) |
這一周,倉庫內貨物的總噸數(shù)是______了填“增多”或“減少”;
若周六結束時倉庫內還有貨物360噸,則周日開始時倉庫內有貨物多少噸?
如果該倉庫貨物進出的裝卸費都是每噸5元,那么這一周內共需付多少元的裝卸費?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設運動時間為t秒.
(1)填空:點A坐標為;拋物線的解析式為 .
(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?
(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解學生體育訓練的情況,某市從全市九年級學生中隨機抽取部分學生進行了一次體育科目測試(把成績結果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)求本次抽樣測試的學生人數(shù);
(2)求扇形圖中∠α的度數(shù),并把條形統(tǒng)計圖補充完整;
(3)該市九年級共有學生9000名,如果全部參加這次體育測試,則測試等級為D的約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝廠生產一種西裝和領帶,西裝每套定價200元,領帶每條定價40元。廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:
①買一套西裝送一條領帶;②西裝和領帶都按定價的90%付款。現(xiàn)某客戶要到該服裝廠購買西裝20套,領帶x條():
(1)若該客戶按方案①購買,需付款______________元(用含x的代數(shù)式表示);若該客戶按方案②購買,需付款________________元(用含x的代數(shù)式表示);
(2)若x=30,通過計算說明此時按哪種方案購買較為合算?
(3)當x=30時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)填在相應的橫線上.
,-,,0.5,2π,3.14159265,-|-|,1.3030030003…(每相鄰兩個3之間依次多一個0).
(1)有理數(shù):______________________________________________________;
(2)無理數(shù):_________________________________________________________;
(3)正實數(shù):__________________________________________________________;
(4)負實數(shù):__________________________________________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一條射線OA,若從點O再引兩條射線OB和OC,使∠AOB=80°,∠BOC=40°,若OD平分∠AOC,則∠BOD的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若t為實數(shù),關于x的方程x2﹣4x+t﹣2=0的兩個非負實數(shù)根為a、b,則代數(shù)式(a2﹣1)(b2﹣1)的最小值是( )
A.﹣15
B.﹣16
C.15
D.16
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com