在平面直角坐標(biāo)系中的位置如圖所示.

(1)作出與關(guān)于軸對(duì)稱的

(2)將向下平移4個(gè)單位長(zhǎng)度,畫出平移后的

(3)中有一點(diǎn)P(x,y),寫出在中對(duì)應(yīng)點(diǎn)P2的坐標(biāo)。

 

【答案】

(1)圖略(2)圖略(3)P2(x,y-4)

【解析】(1)利用軸對(duì)稱性質(zhì),作出A、B、C關(guān)于y軸的對(duì)稱點(diǎn),A1、B1、C1,順次連接A1B1、B1C1、C1A1,即得到關(guān)于y軸對(duì)稱的△A1B1C1;

(2)將A、B、C按平移條件找出它的對(duì)應(yīng)點(diǎn)A2、B2、C2,順次連接A2B2、B2C2、C2A2,即得到平移后的圖形.

(3)根據(jù)橫坐標(biāo)不變,縱坐標(biāo)減4求得

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出與△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(2)將△ABC向下平移3個(gè)單位長(zhǎng)度,畫出平移后的△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•田陽縣一模)以方程組
y=-x+2
y=x-6
的解為坐標(biāo)的點(diǎn)(x,y)在平面直角坐標(biāo)系中的位置是第
象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

 已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)將△ABC繞圓點(diǎn)O旋轉(zhuǎn)180°得到△A1B1C1,請(qǐng)你在圖中畫出△A1B1C1
(2)寫出點(diǎn)A1的坐標(biāo);
(3)求△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

△ABC在平面直角坐標(biāo)系中的位置如圖
(1)通過列表、描點(diǎn)畫出直線y=-x的圖象;
(2)作△ABC關(guān)于直線y=-x對(duì)稱的圖形△A'BC',并寫出△A'BC'各頂點(diǎn)的坐標(biāo);
(3)若點(diǎn)P(m,n)是△ABC內(nèi)部一點(diǎn),則其變換后的對(duì)稱點(diǎn)P'的坐標(biāo)為
(-n,-m)
(-n,-m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)寫出△ABC的各頂點(diǎn)坐標(biāo);
(2)作出與△ABC關(guān)于y軸對(duì)稱的△A1B1C1
(3)將△ABC向下平移3個(gè)單位長(zhǎng)度,畫出平移后的△A2B2C2

查看答案和解析>>

同步練習(xí)冊(cè)答案