精英家教網(wǎng)如圖,將邊長為8cm的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在點F處,折痕為MN,則折痕MN的長是(  )
A、4
3
cm
B、4
2
cm
C、4
3
cm
D、4
5
cm
分析:如圖,連接DE,過點M作MG⊥CD于點G,證明△MNG≌△DEC,則有MN=DE.
解答:精英家教網(wǎng)解:如圖,連接DE.
由題意,在Rt△DCE中,CE=4cm,CD=8cm,
由勾股定理得:DE=
CD2+CE2
=
82+42
=4
5
cm.
過點M作MG⊥CD于點G,則由題意可知MG=BC=CD.
連接DE,交MG于點I.
由折疊可知,DE⊥MN,∴∠NMG+MIE=90°,
∵∠DIG+∠EDC=90°,∠MIE=∠DIG(對頂角相等),
∴∠NMG=∠EDC.
在△MNG與△DEC中,
∠NMG=∠EDC
MG=CD
∠MGN=∠DCE=90°

∴△MNG≌△DEC(ASA).
∴MN=DE=4
5
cm.
故選D.
點評:考查了翻折問題,翻折問題關(guān)鍵是找準(zhǔn)對應(yīng)重合的量,哪些邊、角是相等的.本題中DN=EN是解題關(guān)鍵,再利用勾股定理、全等三角形的知識就迎刃而解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將邊長為8cm的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN長是( 。
A、3cmB、4cmC、5cmD、6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將邊長為8cm的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN的長是
 
cm,tan∠NEC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將邊長為8cm的正方形紙片ABCD折疊,使點D落在BC邊中點E處,點A落在點F處,折痕為MN,則線段CN的長度為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將邊長為8cm的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,求線段CN長.

查看答案和解析>>

同步練習(xí)冊答案