【題目】請?zhí)羁,完成下面的證明,并注明理由.

如圖,,,BE平分DF平分

求證:

證明:∵,(已知)

.(_________

,(已知)

__________.(兩直線平行,同旁內(nèi)角互補(bǔ))

.(_________

,(已知)

.(_________

同理,

________=

,(已知)

.(兩直線平行,內(nèi)錯角相等)

.(__________

【答案】兩直線平行,同旁內(nèi)角互補(bǔ);;同角的補(bǔ)角相等;角平分線的定義;;同位角相等,兩直線平行.

【解析】

根據(jù)平行線的性質(zhì)與判定即可求解.

,(已知)

.(兩直線平行,同旁內(nèi)角互補(bǔ))

,(已知)

.(兩直線平行,同旁內(nèi)角互補(bǔ))

.(同角的補(bǔ)角相等)

,(已知)

.(角平分線的定義)

同理,

=

,(已知)

.(兩直線平行,內(nèi)錯角相等)

.(同位角相等,兩直線平行)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過D作DE⊥AC,垂足為E.

(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AC、BD交于點(diǎn)O,BDAD于點(diǎn)D,將ABD沿BD翻折得到EBD,連接EC、EB

1)求證:四邊形DBCE是矩形;

2)若BD=4,AD=3,求點(diǎn)OAB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).

(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EPCD交于點(diǎn)G,點(diǎn)HMN上一點(diǎn),且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,KGH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E、F分別在AD、BC上,且AE=CF. 求證:四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的四個頂點(diǎn)分別為,,

1)作,使它與關(guān)于原點(diǎn)成中心對稱.

2)作的兩條對角線的交點(diǎn)關(guān)于軸的對稱點(diǎn),點(diǎn)的坐標(biāo)為_______

3)若將點(diǎn)向上平移個單位,使其落在內(nèi)部(不包括邊界),則的取值范圍是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,△AEF的頂點(diǎn)E,F(xiàn)分別在BC、CD邊上,高AG與正方形的邊長相等,連BD分別交AE、AF于點(diǎn)M、N,若EG=4,GF=6,BM= ,則MN的長為。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了對一顆傾斜的古杉樹AB進(jìn)行保護(hù),需測量其長度:在地面上選取一點(diǎn)C,測得∠ACB=45°,AC=24m,∠BAC=66.5°,(參考數(shù)據(jù): ≈1.414,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30).則這顆古杉樹AB的長約為(
A.7.27
B.16.70
C.17.70
D.18.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店用960元購進(jìn)一批服裝,并以每件46元的價格全部售完,由于服裝暢銷,服裝店又用2220元,再次以比第一次進(jìn)價多5元的價格購進(jìn)服裝,數(shù)量是第一次購進(jìn)服裝的2倍,仍以每件46元的價格出售,賣了部分后,為了加快資金周轉(zhuǎn),服裝店將剩余的20件以售價的九折全部出售.問:

1)該服裝店第一次購買了此種服裝多少件?

2)兩次出售服裝共盈利多少元?

查看答案和解析>>

同步練習(xí)冊答案