【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論是________.
【答案】②③④
【解析】
由拋物線與x軸有兩個(gè)交點(diǎn)得到b2﹣4ac>0;有拋物線頂點(diǎn)坐標(biāo)得到拋物線的對(duì)稱軸為直線x=-1,則根據(jù)拋物線的對(duì)稱性得拋物線與x軸的另一個(gè)交點(diǎn)在點(diǎn)(0,0)和(1,0)之間,所以當(dāng)x=1時(shí),y<0,則a+b+c<0;由拋物線的頂點(diǎn)為D(-1,2)得a-b+c=2,由拋物線的對(duì)稱軸為直線x=-=-1得b=2a,所以c-a=2;根據(jù)二次函數(shù)的最大值問題,當(dāng)x=-1時(shí),二次函數(shù)有最大值為2,即只有x=-1時(shí),ax2+bx+c=2,所以說方程ax2+bx+c-2=0有兩個(gè)相等的實(shí)數(shù)根.
∵拋物線與x軸有兩個(gè)交點(diǎn),
∴b2﹣4ac>0,所以①錯(cuò)誤;
∵頂點(diǎn)為D(1,2),
∴拋物線的對(duì)稱軸為直線x=1,
∵拋物線與x軸的一個(gè)交點(diǎn)A在點(diǎn)(3,0)和(2,0)之間,
∴拋物線與x軸的另一個(gè)交點(diǎn)在點(diǎn)(0,0)和(1,0)之間,
∴當(dāng)x=1時(shí),y<0,
∴a+b+c<0,所以②正確
∵拋物線的頂點(diǎn)為D(1,2),
∴ab+c=2,
∵拋物線的對(duì)稱軸為直線x==1,
∴b=2a,
∴a2a+c=2,即ca=2,所以③正確;
∵當(dāng)x=1時(shí),二次函數(shù)有最大值為2,
即只有x=1時(shí), ax2+bx+c=2,
∴方程ax2+bx+c2=0有兩個(gè)相等的實(shí)數(shù)根,所以④正確
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某竹制品加工廠根據(jù)市場(chǎng)調(diào)研結(jié)果,對(duì)該廠生產(chǎn)的一種新型竹制品玩具未來兩年的銷售進(jìn)行預(yù)測(cè),并建立如下模型:設(shè)第t個(gè)月,竹制品銷售量為P(單位:箱),P與t之間存在如圖所示函數(shù)關(guān)系,其圖象是線段AB(不含點(diǎn)A)和線段BC的組合.設(shè)第t個(gè)月銷售每箱的毛利潤為Q(百元),且Q與t滿足如下關(guān)系Q=2t+8(0≤t≤24).
(1)求P與t的函數(shù)關(guān)系式(6≤t≤24).
(2)該廠在第幾個(gè)月能夠獲得最大毛利潤?最大毛利潤是多少?
(3)經(jīng)調(diào)查發(fā)現(xiàn),當(dāng)月毛利潤不低于40000且不高于43200元時(shí),該月產(chǎn)品原材料供給和市場(chǎng)售最和諧,此時(shí)稱這個(gè)月為“和諧月”,那么,在未來兩年中第幾個(gè)月為和諧月?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為4,把它內(nèi)部及邊上的橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn),點(diǎn)P為拋物線的頂點(diǎn)(m為整數(shù)),當(dāng)點(diǎn)P在正方形OABC內(nèi)部或邊上時(shí),拋物線下方(包括邊界)的整點(diǎn)最少有( )
A.3個(gè)B.5個(gè)C.10個(gè)D.15個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是非零實(shí)數(shù),,在同一平面直角坐標(biāo)系中,二次函數(shù)與一次函數(shù)的大致圖象不可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校實(shí)施新課程改革以來,學(xué)生的學(xué)習(xí)能力有了很大提高.王老師為進(jìn)一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對(duì)該班部分學(xué)生進(jìn)行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖(如圖1,2).請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查中,王老師一共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進(jìn)行“兵教兵”互助學(xué)習(xí),請(qǐng)用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海面上甲、乙兩船分別從A,B兩處同時(shí)出發(fā),由西向東行駛,甲船的速度為24n mile/h,乙船的速度為15n mile/h,出發(fā)時(shí),測(cè)得乙船在甲船北偏東50°方向,且AB=10nmile,經(jīng)過20分鐘后,甲、乙兩船分別到達(dá)C,D兩處.
(參考值:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)
(1)求兩條航線間的距離;
(2)若兩船保持原來的速度和航向,還需要多少時(shí)間才能使兩船的距離最短?(精確到0.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正六邊形ABCDEF放置在直角坐標(biāo)系內(nèi),A(﹣2,0),點(diǎn)B在原點(diǎn),把正六邊形ABCDEF沿x軸正半軸作無滑動(dòng)的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過2020次翻轉(zhuǎn)之后,點(diǎn)C的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O.AC=8cm,BD=6cm,點(diǎn)P為AC上一動(dòng)點(diǎn),點(diǎn)P以1cm/的速度從點(diǎn)A出發(fā)沿AC向點(diǎn)C運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為ts,當(dāng)t=_____s時(shí),△PAB為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),OF⊥BD于點(diǎn)F,交⊙O于點(diǎn)D,AC與BD交于點(diǎn)G,點(diǎn)E為OC的延長線上一點(diǎn),且∠OEB=∠ACD.
(1)求證:BE是⊙O的切線;
(2)求證:CD2=CGCA;
(3)若⊙O的半徑為,BG的長為,求tan∠CAB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com