【題目】在抗擊新冠肺炎疫情期間,市場(chǎng)上防護(hù)口罩出現(xiàn)熱銷.某藥店用元購進(jìn)甲,乙兩種不同型號(hào)的口罩共個(gè)進(jìn)行銷售,已知購進(jìn)甲種口罩與乙種口罩的費(fèi)用相同,購進(jìn)甲種口罩單價(jià)是乙種口罩單價(jià)的倍.

求購進(jìn)的甲,乙兩種口罩的單價(jià)各是多少?

若甲,乙兩種口罩的進(jìn)價(jià)不變,該藥店計(jì)劃用不超過元的資金再次購進(jìn)甲,乙兩種口罩共個(gè),求甲種口罩最多能購進(jìn)多少個(gè)?

【答案】1)甲種口罩的單價(jià)為元,乙種口罩的單價(jià)為元.(2)甲種口罩最多購進(jìn)

【解析】

1)設(shè)乙種口罩的單價(jià)為元,則甲種口罩的單價(jià)為元,依據(jù)“購進(jìn)甲種口罩與乙種口罩的費(fèi)用相同,購進(jìn)兩種不同型號(hào)的口罩共個(gè)”建立分式方程求解即可;

2)設(shè)購進(jìn)甲種口罩只,則購進(jìn)乙種口罩只,依據(jù)“購進(jìn)甲,乙兩種口罩的資金不超過元”建立不等關(guān)系,解不等式即可得解.

解:設(shè)乙種口罩的單價(jià)為元,則甲種口罩的單價(jià)為元.

根據(jù)題意得:

解得:

經(jīng)檢驗(yàn),是原方程的解,

答:甲種口罩的單價(jià)為元,乙種口罩的單價(jià)為元.

設(shè)該藥店購進(jìn)甲種口罩只,則購進(jìn)乙種口罩只.

由題意得

解得

答:甲種口罩最多購進(jìn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)圓上所有的點(diǎn)都在一個(gè)角的內(nèi)部或邊上,那么稱這個(gè)圓為該角的角內(nèi)圓.特別地,當(dāng)這個(gè)圓與角的至少一邊相切時(shí),稱這個(gè)圓為該角的角內(nèi)相切圓.在平面直角坐標(biāo)系xOy中,點(diǎn)E,F分別在x軸的正半軸和y軸的正半軸上.

1)分別以點(diǎn)A1,0),B1,1),C32)為圓心,1為半徑作圓,得到⊙A,⊙B和⊙C,其中是∠EOF的角內(nèi)圓的是   ;

2)如果以點(diǎn)Dt2)為圓心,以1為半徑的⊙D為∠EOF的角內(nèi)圓,且與直線yx有公共點(diǎn),求t的取值范圍;

3)點(diǎn)M在第一象限內(nèi),如果存在一個(gè)半徑為1且過點(diǎn)P2,2)的圓為EMO的角內(nèi)相切圓,直接寫出EOM的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,四邊形OABC為菱形,OAx軸的正半軸上,AOC=60°,過點(diǎn)C的反比例函數(shù)的圖象與AB交于點(diǎn)D,則COD的面積為( 。

A.B.C.4D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,線段AB的兩個(gè)端點(diǎn)的坐標(biāo)分別為(-12)、(1,1).拋物線y=ax2+bx+ca≠0)與x軸交于C、D兩點(diǎn),點(diǎn)C在點(diǎn)D左側(cè),當(dāng)頂點(diǎn)在線段AB上移動(dòng)時(shí),點(diǎn)C橫坐標(biāo)的最小值為-2.在拋物線移動(dòng)過程中,a-b+c的最小值是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,某個(gè)函數(shù)圖象上任意兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2y2),且x1x2,d=|y1-y2|.將這個(gè)函數(shù)圖象在直線y=y1下方部分沿直線y=y1翻折,并將其向上平移d個(gè)單位,將這部分圖象與原函數(shù)圖象剩余部分的圖象組成的新圖象記為G,圖象G對(duì)應(yīng)的函數(shù)叫做這個(gè)函數(shù)的伴隨函數(shù).例如:點(diǎn)A10)、B21)在一次函數(shù)y=x-1的圖象上,則它的伴隨函數(shù)為

1)點(diǎn)AB在直線y=-2x上,點(diǎn)A在第二象限,點(diǎn)Bx軸上.當(dāng)d=2時(shí),求函數(shù)y=-2x的伴隨函數(shù)所對(duì)應(yīng)的函數(shù)表達(dá)式.

2)二次函數(shù)y=x2-2x-3的圖象交x軸負(fù)半軸交于點(diǎn)A,點(diǎn)B在拋物線上,設(shè)點(diǎn)B的橫坐標(biāo)為m

①當(dāng)d=0時(shí),求該拋物線的伴隨函數(shù)的圖象G與直線y=4在第一象限的交點(diǎn)坐標(biāo);

②若直線y=2與該拋物線的伴隨函數(shù)的圖象G有四個(gè)交點(diǎn),直接寫出m的取值范圍.

3)拋物線y=x2-2nx+n2-n-1y軸交于點(diǎn)A,點(diǎn)B在點(diǎn)A的左側(cè)拋物線上,且d=1,當(dāng)該拋物線的伴隨函數(shù)的圖象G上的點(diǎn)到x軸距離的最小值為1時(shí),直接寫出n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017山東日照已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論:

①拋物線過原點(diǎn);

4a+b+c=0;

a﹣b+c<0;

④拋物線的頂點(diǎn)坐標(biāo)為(2,b);

⑤當(dāng)x<2時(shí),yx增大而增大.

其中結(jié)論正確的是(

A. ①②③ B. ③④⑤ C. ①②④ D. ①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護(hù)區(qū)開展了尋找古樹活動(dòng).如圖,在一個(gè)坡度(或坡比)=1:2.4的山坡AB上發(fā)現(xiàn)有一棵占樹CD.測(cè)得古樹底端C到山腳點(diǎn)A的距離AC=26米,在距山腳點(diǎn)A水平距離6米的點(diǎn)E處,測(cè)得古樹頂端D的仰角∠AED=48°(古樹CD與山坡AB的剖面、點(diǎn)E在同一平面上,古樹CD與直線AE垂直),則古樹CD的高度約為( )(參考數(shù)據(jù):°≈0.73,cos8°≈0.67,tan48°≈1.11

A.17.0B.21.9C.23.3D.33.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+2分別與x軸,y軸交于A,B兩點(diǎn),與雙曲線y交于E,F兩點(diǎn),若AB2EF,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠A90°,ABAC,點(diǎn)D,E分別在邊ABAC上,ADAE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).

1)觀察猜想:圖1中,線段PMPN的數(shù)量關(guān)系是   ,位置關(guān)系是   ;

2)探究證明:把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BDCE,判斷△PMN的形狀,并說明理由;

3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD4AB10,請(qǐng)直接寫出△PMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案