【題目】在抗擊新冠肺炎疫情期間,市場(chǎng)上防護(hù)口罩出現(xiàn)熱銷.某藥店用元購進(jìn)甲,乙兩種不同型號(hào)的口罩共個(gè)進(jìn)行銷售,已知購進(jìn)甲種口罩與乙種口罩的費(fèi)用相同,購進(jìn)甲種口罩單價(jià)是乙種口罩單價(jià)的倍.
求購進(jìn)的甲,乙兩種口罩的單價(jià)各是多少?
若甲,乙兩種口罩的進(jìn)價(jià)不變,該藥店計(jì)劃用不超過元的資金再次購進(jìn)甲,乙兩種口罩共個(gè),求甲種口罩最多能購進(jìn)多少個(gè)?
【答案】(1)甲種口罩的單價(jià)為元,乙種口罩的單價(jià)為元.(2)甲種口罩最多購進(jìn)只
【解析】
(1)設(shè)乙種口罩的單價(jià)為元,則甲種口罩的單價(jià)為元,依據(jù)“購進(jìn)甲種口罩與乙種口罩的費(fèi)用相同,購進(jìn)兩種不同型號(hào)的口罩共個(gè)”建立分式方程求解即可;
(2)設(shè)購進(jìn)甲種口罩只,則購進(jìn)乙種口罩只,依據(jù)“購進(jìn)甲,乙兩種口罩的資金不超過元”建立不等關(guān)系,解不等式即可得解.
解:設(shè)乙種口罩的單價(jià)為元,則甲種口罩的單價(jià)為元.
根據(jù)題意得:
解得:
經(jīng)檢驗(yàn),是原方程的解,
答:甲種口罩的單價(jià)為元,乙種口罩的單價(jià)為元.
設(shè)該藥店購進(jìn)甲種口罩只,則購進(jìn)乙種口罩只.
由題意得
解得
答:甲種口罩最多購進(jìn)只
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)圓上所有的點(diǎn)都在一個(gè)角的內(nèi)部或邊上,那么稱這個(gè)圓為該角的角內(nèi)圓.特別地,當(dāng)這個(gè)圓與角的至少一邊相切時(shí),稱這個(gè)圓為該角的角內(nèi)相切圓.在平面直角坐標(biāo)系xOy中,點(diǎn)E,F分別在x軸的正半軸和y軸的正半軸上.
(1)分別以點(diǎn)A(1,0),B(1,1),C(3,2)為圓心,1為半徑作圓,得到⊙A,⊙B和⊙C,其中是∠EOF的角內(nèi)圓的是 ;
(2)如果以點(diǎn)D(t,2)為圓心,以1為半徑的⊙D為∠EOF的角內(nèi)圓,且與直線y=x有公共點(diǎn),求t的取值范圍;
(3)點(diǎn)M在第一象限內(nèi),如果存在一個(gè)半徑為1且過點(diǎn)P(2,2)的圓為∠EMO的角內(nèi)相切圓,直接寫出∠EOM的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,四邊形OABC為菱形,OA在x軸的正半軸上,∠AOC=60°,過點(diǎn)C的反比例函數(shù)的圖象與AB交于點(diǎn)D,則△COD的面積為( 。
A.B.C.4D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,線段AB的兩個(gè)端點(diǎn)的坐標(biāo)分別為(-1,2)、(1,1).拋物線y=ax2+bx+c(a≠0)與x軸交于C、D兩點(diǎn),點(diǎn)C在點(diǎn)D左側(cè),當(dāng)頂點(diǎn)在線段AB上移動(dòng)時(shí),點(diǎn)C橫坐標(biāo)的最小值為-2.在拋物線移動(dòng)過程中,a-b+c的最小值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,某個(gè)函數(shù)圖象上任意兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),且x1≤x2,d=|y1-y2|.將這個(gè)函數(shù)圖象在直線y=y1下方部分沿直線y=y1翻折,并將其向上平移d個(gè)單位,將這部分圖象與原函數(shù)圖象剩余部分的圖象組成的新圖象記為G,圖象G對(duì)應(yīng)的函數(shù)叫做這個(gè)函數(shù)的伴隨函數(shù).例如:點(diǎn)A(1,0)、B(2,1)在一次函數(shù)y=x-1的圖象上,則它的伴隨函數(shù)為.
(1)點(diǎn)A、B在直線y=-2x上,點(diǎn)A在第二象限,點(diǎn)B在x軸上.當(dāng)d=2時(shí),求函數(shù)y=-2x的伴隨函數(shù)所對(duì)應(yīng)的函數(shù)表達(dá)式.
(2)二次函數(shù)y=x2-2x-3的圖象交x軸負(fù)半軸交于點(diǎn)A,點(diǎn)B在拋物線上,設(shè)點(diǎn)B的橫坐標(biāo)為m.
①當(dāng)d=0時(shí),求該拋物線的伴隨函數(shù)的圖象G與直線y=4在第一象限的交點(diǎn)坐標(biāo);
②若直線y=2與該拋物線的伴隨函數(shù)的圖象G有四個(gè)交點(diǎn),直接寫出m的取值范圍.
(3)拋物線y=x2-2nx+n2-n-1與y軸交于點(diǎn)A,點(diǎn)B在點(diǎn)A的左側(cè)拋物線上,且d=1,當(dāng)該拋物線的伴隨函數(shù)的圖象G上的點(diǎn)到x軸距離的最小值為1時(shí),直接寫出n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017山東日照)已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論:
①拋物線過原點(diǎn);
②4a+b+c=0;
③a﹣b+c<0;
④拋物線的頂點(diǎn)坐標(biāo)為(2,b);
⑤當(dāng)x<2時(shí),y隨x增大而增大.
其中結(jié)論正確的是( )
A. ①②③ B. ③④⑤ C. ①②④ D. ①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護(hù)區(qū)開展了尋找古樹活動(dòng).如圖,在一個(gè)坡度(或坡比)=1:2.4的山坡AB上發(fā)現(xiàn)有一棵占樹CD.測(cè)得古樹底端C到山腳點(diǎn)A的距離AC=26米,在距山腳點(diǎn)A水平距離6米的點(diǎn)E處,測(cè)得古樹頂端D的仰角∠AED=48°(古樹CD與山坡AB的剖面、點(diǎn)E在同一平面上,古樹CD與直線AE垂直),則古樹CD的高度約為( )(參考數(shù)據(jù):°≈0.73,cos8°≈0.67,tan48°≈1.11)
A.17.0米B.21.9米C.23.3米D.33.3米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+2分別與x軸,y軸交于A,B兩點(diǎn),與雙曲線y=交于E,F兩點(diǎn),若AB=2EF,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想:圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明:把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com