分析 (1)由AB∥DC,根據(jù)平行線的性質(zhì),可得∠A=∠C,∠B=∠D,又由AB=DC,即可利用ASA判定△AOB≌△COD,繼而證得結(jié)論;
(2)由(1),可直接利用ASA判定△AOE≌△COF,繼而證得OE=OF.
解答 證明:(1)∵AB∥DC,
∴∠A=∠C,∠B=∠D,
在△AOB和△COD中,
$\left\{\begin{array}{l}{∠A=∠C}\\{AB=CD}\\{∠B=∠D}\end{array}\right.$,
∴△AOB≌△COD(ASA),
∴OA=OC,OB=OD,
即AC與BD互相平分;
(2)在△AOE和△COF中,
$\left\{\begin{array}{l}{∠A=∠C}\\{OA=OC}\\{∠AOE=∠COF}\end{array}\right.$,
∴△AOE≌△COF,
∴OE=OF.
點(diǎn)評(píng) 此題考查了全等三角形的判定與性質(zhì)以及平行線的性質(zhì).注意利用平行線的性質(zhì),證得角相等是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{24}$ | B. | $\sqrt{\frac{2}{3}}$ | C. | $\sqrt{0.3}$ | D. | $\sqrt{11}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com