【題目】如圖1,⊙O是△ABC的外接圓,AB是直徑,D是⊙O外一點且滿足∠DCA=∠B,連接AD.
(1)求證:CD是⊙O的切線;
(2)若AD⊥CD,CD=2,AD=4,求直徑AB的長;
(3)如圖2,當∠DAB=45°時,AD與⊙O交于E點,試寫出AC、EC、BC之間的數量關系并證明.
【答案】(1)見解析;(2)AB=5;(3),見解析 .
【解析】
(1)連接OC,由OB=OC知∠OCB=∠B,結合∠DCA=∠B得∠DCA=∠OCB,再由AB是直徑知∠ACB=90°,據此可得∠DCA+∠ACO=∠OCB+∠ACO=90°,從而得證;
(2)先利用勾股定理求得 ,再證△ADC∽△ACB得 ,據此求解可得;
(3)連接BE,在AC上截取AF=BC,連接EF.由AB是直徑、∠DAB=45°知∠AEB=90°,據此得△AEB是等腰直角三角形,AE=BE,再證△ECB≌△EFA得EF=EC,據此可知△FEC是等腰直角三角形,從而得出 ,從而得證.
解:(1)如圖1,連接OC.
∵OB=OC,
∴∠OCB=∠B,
∵∠DCA=∠B,
∴∠DCA=∠OCB,
∵AB是直徑,
∴∠ACB=90°,
∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,
∴CD是⊙O的切線.
(2)∵AD⊥CD,CD=2,AD=4.
∴ ,
由(1)可知∠DCA=∠B,∠D=∠ACB=90°,
∴△ADC∽△ACB,
∴,即 ,
∴AB=5,
(3) ,
如圖2,連接BE,在AC上截取AF=BC,連接EF.
∵AB是直徑,∠DAB=45°,
∴∠AEB=90°,
∴△AEB是等腰直角三角形,
∴AE=BE,
又∵∠EAC=∠EBC,
∴△ECB≌△EFA(SAS),
∴EF=EC,
∵∠ACE=∠ABE=45°,
∴△FEC是等腰直角三角形,
∴,
∴ .
科目:初中數學 來源: 題型:
【題目】如圖,將函數y= (x-2)2+1的圖象沿y軸向上平移得到一條新函數的圖象,其中點A(1,m),B(4,n)平移后的對應點分別為點A′,B′,若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數表達式是__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是正方形ABCD的對角線BD延長線上的一點,連接PA,過點P作PE⊥PA交BC的延長線于點E,過點E作EF⊥BP于點F,則下列結論中:①PA=PE;②CE=PD;③BF﹣PD=BD;④S△PEF=S△ADP,正確的是___(填寫所有正確結論的序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,點P從A出發(fā)沿AC向C點以1厘米/秒的速度勻速移動;點Q從C出發(fā)沿CB向B點以2厘米/秒的 速度勻速移動.點P、Q分別從起點同時出發(fā),移動到某一位置時所需時間為t秒.
(1)當t= 時,PQ∥AB
(2)當t為何值時,△PCQ的面積等于5cm2?
(3)在P、Q運動過程中,在某一時刻,若將△PQC翻折,得到△EPQ,如圖2,PE與AB能否垂直?若能,求出相應的t值;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】巳知二次函數y=x2﹣2x﹣3.
(1)在如圖所示平面直角坐標系中畫出該函數的圖象;
(2)寫岀函數值y隨x變化的増減情況;
(3)將拋物線怎樣平移才能使它經過坐標原點.并寫出平移后的函數解析式.(寫出一種方式即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 如圖,⊙M的半徑為2,圓心M的坐標為(3,4),點P是⊙M上的任意一點,PA⊥PB,且PA、PB與x軸分別交于A、B兩點,若點A、點B關于原點O對稱,則AB的最小值為( 。
A. 3B. 4C. 6D. 8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知等腰直角三角形△ABC,點P是斜邊BC上一點(不與B,C重合),PE是△ABP的外接圓☉O的直徑.
(1)求證:△APE是等腰直角三角形;
(2)證明△APC≌△AEB;
(3)若☉O的直徑為2,求PC2+PB2的值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點在和之間,其部分圖象如圖所示.則下列結論:①;②;③;④(為實數);⑤點,,是該拋物線上的點,則,正確的個數有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com