【題目】在平面直角坐標系中,點O為坐標原點,我們把橫、縱坐標都為整數(shù)的點稱為整點,記定點都是整點的三角形為整點三角形.如圖,已知整點O(0,0),A(2,4),請在所給網(wǎng)格區(qū)域(含邊界)上按要求畫圖.
(1)在圖1中畫一個整點三角形OAB,其中點B在第一象限,且點B的橫、縱坐標之和等于點A的橫坐標;
(2)在圖2中畫一個整點三角形OAC,其中點C的坐標為(3t,t),且點C的橫、縱坐標之和是點A的縱坐標的2倍.請直接寫出△OAC的面積.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是上半圓的弦,過點C作⊙O的切線DE交AB的延長線于點E,過點A作切線DE的垂線,垂足為D,且與⊙O交于點F,設∠DAC,∠CEA的度數(shù)分別是α,β.
(1)用含α的代數(shù)式表示β,并直接寫出α的取值范圍;
(2)連接OF與AC交于點O′,當點O′是AC的中點時,求α,β的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當AB=BC時,它是菱形 B. 當AC⊥BD時,它是菱形
C. 當∠ABC=90°時,它是矩形 D. 當AC=BD時,它是正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明:如圖,點D,E,F分別是三角形ABC的邊BC,CA,AB上的點,連接DE,DF,DE∥AB,∠BFD=∠CED,連接BE交DF于點G,求證:∠EGF+∠AEG=180°.
證明:∵DE∥AB(已知),
∴∠A=∠CED( )
又∵∠BFD=∠CED(已知),
∴∠A=∠BFD( )
∴DF∥AE( )
∴∠EGF+∠AEG=180°( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】珠海市某中學開展主題為“我愛閱讀”的專題調(diào)查活動,為了解學校1200名學生一年內(nèi)閱讀書籍量,隨機抽取部分學生進行統(tǒng)計,繪制成如下尚未完成的頻數(shù)分布表和頻數(shù)分布直方圖.請根據(jù)圖表,解答下面的問題:
分組 | 頻數(shù) | 頻率 |
0≤x<5 | 4 | 0.08 |
5≤x<10 | 14 | 0.28 |
10≤x<15 | 16 | a |
15≤x<20 | b | c |
20≤x<25 | 10 | 0.2 |
合計 | d | 1.00 |
(1)a= ,b= c= .
(2)補全頻數(shù)分布直方圖;
(3)根據(jù)該樣本,估計該校學生閱讀書籍數(shù)量在15本或15本以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了倡導“節(jié)約用水,從我做起”,南沙區(qū)政府決定對區(qū)直屬機關(guān)300戶家庭的用水情況作一次調(diào)查,區(qū)政府調(diào)查小組隨機抽查了其中50戶家庭一年的月平均用水量(單位:噸),調(diào)查中發(fā)現(xiàn)每戶用水量均在10﹣14噸/月范圍,并將調(diào)查結(jié)果制成了如圖所示的條形統(tǒng)計圖.
(1)請將條形統(tǒng)計圖補充完整;
(2)這50戶家庭月用水量的平均數(shù)是 ,眾數(shù)是 ,中位數(shù)是 ;
(3)根據(jù)樣本數(shù)據(jù),估計南沙區(qū)直屬機關(guān)300戶家庭中月平均用水量不超過12噸的約有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一個含45°角的直角三角板BEF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點B重合,聯(lián)結(jié)DF,點M,N分別為DF,EF的中點,聯(lián)結(jié)MA,MN.
(1)如圖1,點E,F分別在正方形的邊CB,AB上,請判斷MA,MN的數(shù)量關(guān)系和位置關(guān)系,直接
寫出結(jié)論;
(2)如圖2,點E,F分別在正方形的邊CB,AB的延長線上,其他條件不變,那么你在(1)中得到的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學在實施快樂大課間之前組織過“我最喜歡的球類”的調(diào)查活動,每個學生僅選擇一項,通過對學生的隨機抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計圖.
(1)求出被調(diào)查的學生人數(shù);
(2)把折線統(tǒng)計圖補充完整;
(3)小亮、小瑩、小芳和大剛到學校乒乓球室打乒乓球,當時只有一副空球桌,他們只能選兩人打第一場.如果確定小亮打第一場,其余三人用“手心、手背”的方法確定誰獲勝誰打第一場若三人中有一人出的與其余兩人不同則獲勝;若三人出的都相同則平局.已知大剛出手心,請用樹狀圖分析大剛獲勝的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com