【題目】某市為提高學(xué)生參與體育活動的積極性,2011年9月圍繞“你最喜歡的體育運動項目(只寫一項)”這一問題,對初一新生進(jìn)行隨機(jī)抽樣調(diào)查,下圖是根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖(不完整).
請你根據(jù)圖中提供的信息解答下列問題:
(1)本次抽樣調(diào)查的樣本容量是多少?
(2)根據(jù)條形統(tǒng)計圖中的數(shù)據(jù),求扇形統(tǒng)計圖中“最喜歡足球運動”的學(xué)生數(shù)所對應(yīng)扇形的圓心角度數(shù).
(3)請將條形統(tǒng)計圖補(bǔ)充完整.
(4)若該市2011年約有初一新生21000人,請你估計全市本屆學(xué)生中“最喜歡足球運動”的學(xué)生約有多少人.

【答案】
(1)解:100÷20%=500,

∴本次抽樣調(diào)查的樣本容量是500


(2)解:∵360°× =43.2°,

∴扇形統(tǒng)計圖中“最喜歡足球運動”的學(xué)生數(shù)所對應(yīng)的扇形圓心角度數(shù)為43.2°


(3)解:如圖:


(4)解:21000× =2520(人)

全市本屆學(xué)生中“最喜歡足球運動”的學(xué)生約有2520人


【解析】(1)用喜歡健身操的學(xué)生數(shù)除以其所占的百分比即可求得樣本容量;(2)用周角乘以最喜歡足球運動的學(xué)生所占的百分比即可求得其圓心角的度數(shù);(3)求得喜歡籃球的人數(shù)后補(bǔ)全統(tǒng)計圖即可;(4)用總?cè)藬?shù)乘以喜歡足球的人數(shù)占總?cè)藬?shù)的百分比即可求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師從家門口騎車去單位上班,先走平路到達(dá)A地,再上坡到達(dá)B地,最后下坡到達(dá)工作單位,所用的時間與路程的關(guān)系如圖所示.若王老師下班時,還沿著這條路返回家中,回家途中經(jīng)過平路、上坡、下坡的速度不變,那么王老師回家需要的時間是(
A.15分鐘
B.14分鐘
C.13分鐘
D.12分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進(jìn)取”主題班會活動,活動后,就活動的5個主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請將條形統(tǒng)計圖補(bǔ)充完整,并在扇形統(tǒng)計圖中計算出“進(jìn)取”所對應(yīng)的圓心角的度數(shù).
(3)如果要在這5個主題中任選兩個進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一測量愛好者,在海邊測量位于正東方向的小島高度AC,如圖所示,他先在點B測得山頂點A的仰角為30°,然后向正東方向前行62米,到達(dá)D點,在測得山頂點A的仰角為60°(B、C、D三點在同一水平面上,且測量儀的高度忽略不計).求小島高度AC(結(jié)果精確的1米,參考數(shù)值:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一矩形紙片ABCD,AB=6,AD=8,將紙片折疊使AB落在AD邊上,折痕為AE,再將△ABE以BE為折痕向右折疊,AE與CD交于點F,則 的值是(
A.1
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的切線,切點為B,連接AO,AO與⊙O交于點C,BD為⊙O的直徑,連接CD.若∠A=30°,⊙O的半徑為2,則圖中陰影部分的面積為(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD是△ABC的角平分線,⊙O經(jīng)過A、B、D三點.過點B作BE∥AD,交⊙O于點E,連接ED。

(1)求證:ED∥AC
(2)若BD=2CD,設(shè)△EBD的面積為S1 , △ADC的面積為S2 , 且S12﹣16S2+4=0,求△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2﹣2mx+m2+m﹣1(m是常數(shù))的頂點為P,直線l:y=x﹣1

(1)求證:點P在直線l上。
(2)當(dāng)m=﹣3時,拋物線與x軸交于A,B兩點,與y軸交于點C,與直線l的另一個交點為Q,M是x軸下方拋物線上的一點,∠ACM=∠PAQ(如圖),求點M的坐標(biāo)
(3)若以拋物線和直線l的兩個交點及坐標(biāo)原點為頂點的三角形是等腰三角形,請直接寫出所有符合條件的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,已知AD>AB.在邊AD上取點E,使AE=AB,連結(jié)CE,過點E作EF⊥CE,與邊AB或其延長線交于點F.
猜想:如圖①,當(dāng)點F在邊AB上時,線段AF與DE的大小關(guān)系為______.
探究:如圖②,當(dāng)點F在邊AB的延長線上時,EF與邊BC交于點G.判斷線段AF與DE的大小關(guān)系,并加以證明.
應(yīng)用:如圖②,若AB=2,AD=5,利用探究得到的結(jié)論,求線段BG的長.

查看答案和解析>>

同步練習(xí)冊答案