【題目】如圖,在矩形ABCD中,AB=2,BC=4,⊙D的半徑為1.現(xiàn)將一個直角三角板的直角頂點與矩形的對稱中心O重合,繞著O點轉(zhuǎn)動三角板,使它的一條直角邊與⊙D切于點H,此時兩直角邊與AD交于E,F(xiàn)兩點,則tan∠EFO的值為_____.
【答案】
【解析】分析: 本題可以通過證明∠EFO=∠HDE,再求出∠HDE的正切值就是∠EFO的正切值.
詳解: 連接DH,作OG⊥CD于G,如圖,
∵在矩形ABCD中,AB=2,BC=4,
∴BD==2,
∵O是對稱中心,
∴OD=BD=,
∵OG⊥CD,
∴DG=CD=1,OG=BC=2,
∴OG為O的切線,
∵OH是D的切線,
∴DH⊥OH,OH=OG=2,
∵DH=1,
∴tan∠ADB==,tan∠HOD==,
∵∠ADB=∠HOD,
∴OE=ED,
設EH為x,則ED=OE=OHEH=2x,
∴1 +x =(2x) ,解得x=,
即EH=.
又∵∠FOE=∠DHO=90°,
∴FO∥DH,
∴∠EFO=∠HDE,
∴tan∠EFO=tan∠HDE==.
點睛: 本題主要是考查切線的性質(zhì)及解直角三角形的應用,關鍵是利用平行把已知角代換成其它相等的容易求出其正切值的角.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C為線段AB上一點,在△ACM,△CBN中,AC=CM,BC=CN,∠ACM=∠BCN=60°,連接AN交CM于點E,連接BM交CN于點F.
求證:(1)AN=BM.(2)△CEF是等邊三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某涌泉蜜桔長方體包裝盒的展開圖.具體數(shù)據(jù)如圖所示,且長方體盒子的長是寬的2倍.
(1)展開圖的6個面分別標有如圖所示的序號,若將展開圖重新圍成一個包裝盒,則相對的面分別是 與 , 與 , 與 ;
(2)若設長方體的寬為xcm,則長方體的長為 cm,高為 cm;(用含x的式子表示)
(3)求這種長方體包裝盒的體積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,的三個頂點的位置如圖所示,現(xiàn)將沿的方向平移,使得點移至圖中的點的位置.
(1)在直角坐標系中,畫出平移后所得(其中、分別是、的對應點).
(2)(1)中所得的點,的坐標分別是________,________.
(3)直接寫出的面積為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y1=ax2+bx+c(a≠0)的頂點坐標A(﹣1,3),與x軸的一個交點B(﹣4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:①2a﹣b=0;②abc<0;③拋物線與x軸的另一個交點坐標是(3,0);④方程ax2+bx+c﹣3=0有兩個相等的實數(shù)根;⑤當﹣4<x<﹣1時,則y2<y1.
其中正確的是( )
A. ①②③ B. ①③⑤ C. ①④⑤ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:
分 組 | 頻數(shù) | 頻率 |
第一組(0≤x<15) | 3 | 0.15 |
第二組(15≤x<30) | 6 | a |
第三組(30≤x<45) | 7 | 0.35 |
第四組(45≤x<60) | b | 0.20 |
(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計圖補充完整;
(2)如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?
(3)已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AD=3,CD=4,點E在CD上,且DE=1.
(1)感知:如圖①,連接AE,過點E作EF丄AE,交BC于點F,連接AE,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點E作EF⊥PE,交BC于點F,連接PF.求證:△PDE和△ECF相似;
(3)應用:如圖③,若EF交AB于點F,EF丄PE,其他條件不變,且△PEF的面積是6,則AP的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,已知D,E分別為邊BC,AD的中點,且S△ABC=4 cm2,則△BEC的面積為( )
A. 2 cm2 B. 1 cm2 C. 0.5 cm2 D. 0.25 cm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】幻方是一種將數(shù)字排在正方形格子中,使每行、每列和每條對角線上的數(shù)字和都相等的模型.數(shù)學課上,老師在黑板上畫出一個幻方如圖所示,并設計游戲:一人將一顆能粘在黑板上的磁鐵豆隨機投入幻方內(nèi),另一人猜數(shù),若所猜數(shù)字與投出的數(shù)字相符,則猜數(shù)的人獲勝,否則投磁鐵豆的人獲勝.猜想的方法從以下兩種中選一種:
猜“是大于的數(shù)”或“不是大于的數(shù)”;
猜“是的倍數(shù)”或“不是的倍數(shù)”;
如果輪到你猜想,那么為了盡可能獲勝,你將選擇哪--種猜數(shù)方法?怎么猜?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com