【題目】如圖,在⊙O中,直徑AB與弦CD相交于點(diǎn)P,∠CAB=62°,∠APD=86°.
(1)求∠B的大;
(2)已知AD=6,求圓心O到BD的距離.
【答案】(1)∠B=24°;(2)點(diǎn)O到BD的距離為3.
【解析】
(1)利用三角形的一個外角等于和它不相鄰的兩內(nèi)角之和,可求出∠C的度數(shù),再利用同弧所對的圓周角相等,求出∠B的度數(shù).
(2)過點(diǎn)O作OE⊥BD于點(diǎn)E,利用垂徑定理可得點(diǎn)E是BD的中點(diǎn),再利用圓周角定理可得AD⊥BD,從而可證OE是△ADB的中位線,然后利用三角形中位線定理可求出結(jié)果.
解:(1)∵∠APD=∠C+∠CAB,
∴∠C=86°-62°=24°
∴∠B=∠C=24°
(2)過點(diǎn)O作OE⊥BD于點(diǎn)E
∴DE=BE,
∵AB是直徑,
∴∠ADB=90°,即AD⊥BD
∴OE∥AD,點(diǎn)E是BD的中點(diǎn),點(diǎn)O是AB的中點(diǎn)
∴OE是△ADB的中位線,
∴
∴點(diǎn)O到BD的距離為3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了推進(jìn)球類運(yùn)動的發(fā)展,某校組織校內(nèi)球類運(yùn)動會,分籃球、足球、排球、羽毛球、乒乓球五項,要求每位學(xué)生必須參加一項并且只能參加一項,某班有一名學(xué)生根據(jù)自己了解的班內(nèi)情況繪制了如圖所示的完整統(tǒng)計表和扇形統(tǒng)計圖.
請根據(jù)圖表中提供的信息,解答下列問題:
(1)圖表中 , ;
(2)該班參加乒乓球活動的4位同學(xué)中,有3位男同學(xué)(分別用,,表示)和1位女同學(xué)(用表示),現(xiàn)準(zhǔn)備從中選出兩名同學(xué)參加比賽,用樹狀圖或列表法求出恰好選出一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一圓弧形橋拱的圓心為,拱橋的水面跨度米,橋拱到水面的最大高度為米.求:
橋拱的半徑;
現(xiàn)水面上漲后水面跨度為米,求水面上漲的高度為________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,將△ABC繞點(diǎn)A逆時針方向旋轉(zhuǎn)60°得到△AB′C′,求線段B′C的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a>0)與x軸的正半軸交于A,C兩點(diǎn)(點(diǎn)A在點(diǎn)C右側(cè)),與y軸正半軸交于點(diǎn)B,連結(jié)BC,將△BOC沿直線BC翻折,若點(diǎn)O恰好落在線段AB上,則稱該拋物線為”折點(diǎn)拋物線”,下列拋物線是“折點(diǎn)拋物線”的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某種商品的進(jìn)價為每件30元該商品在第x天的售價是y1(單位:元/件),銷量是y2(單位:件),且滿足關(guān)系式,y2=200﹣2x,設(shè)每天銷售該商品的利潤為w元.
(1)寫出w與x的函數(shù)關(guān)系式;
(2)銷售該商品第幾天時,當(dāng)天銷售利潤最大?最大利潤是多少?
(3)該商品銷售過程中,共有多少天日銷售利潤不低于4800元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某新型高科技商品,每件的售價比進(jìn)價多6元,5件的進(jìn)價相當(dāng)于4件的售價,每天可售出200件,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件商品漲價1元,每天就會少賣5件.
(1)該商品的售價和進(jìn)價分別是多少元?
(2)設(shè)每天的銷售利潤為w元,每件商品漲價x元,則當(dāng)售價為多少元時,該商品每天的銷售利潤最大,最大利潤為多少元?
(3)為增加銷售利潤,營銷部推出了以下兩種銷售方案:方案一:每件商品漲價不超過8元;方案二:每件商品的利潤至少為24元,請比較哪種方案的銷售利潤更高,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線C1:y=﹣(x+m)2+m2(m>0),拋物線C2:y=(x﹣n)2+n2(n>0),稱拋物線C1,C2互為派對拋物線,例如拋物線C1:y=﹣(x+1)2+1與拋物線C2:y=(x﹣)2+2是派對拋物線,已知派對拋物線C1,C2的頂點(diǎn)分別為A,B,拋物線C1的對稱軸交拋物線C2于C,拋物線C2的對稱軸交拋物線C1與D.
(1)已知拋物線①y=﹣x2﹣2x,②y=(x﹣3)2+3,③y=(x﹣)2+2,④y=x2﹣x+,則拋物線①②③④中互為派對拋物線的是 (請在橫線上填寫拋物線的數(shù)字序號);
(2)如圖1,當(dāng)m=1,n=2時,證明AC=BD;
(3)如圖2,連接AB,CD交于點(diǎn)F,延長BA交x軸的負(fù)半軸于點(diǎn)E,記BD交x軸于G,CD交x軸于點(diǎn)H,∠BEO=∠BDC.
①求證:四邊形ACBD是菱形;
②若已知拋物線C2:y=(x﹣2)2+4,請求出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:拋物線交x軸于A,C兩點(diǎn),交y軸于點(diǎn)B,且OB=2CO.
(1)求二次函數(shù)解析式;
(2)在二次函數(shù)圖象位于x軸上方部分有兩個動點(diǎn)M、N,且點(diǎn)N在點(diǎn)M的左側(cè),過M、N作x軸的垂線交x軸于點(diǎn)G、H兩點(diǎn),當(dāng)四邊形MNHG為矩形時,求該矩形周長的最大值;
(3) 拋物線對稱軸上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com