如圖,B、C、E是同一直線上的三個(gè)點(diǎn),四邊形ABCD與四邊形CEFG都是正方形.連接BG、DE.

(1)觀察猜想BG與DE之間的大小關(guān)系,并證明你的結(jié)論;

(2)如圖若把正方形CEFG繞點(diǎn)C旋轉(zhuǎn)一個(gè)角度,(1)中你猜想的大小關(guān)系成立嗎?若成立,證明你的結(jié)論;若不成立,說明你的理由.

答案:
解析:

  解:(1)BG=DE.

  因?yàn)樗倪呅蜛BCD和四邊形CEFG都是正方形,

  所以GC=CE,BC=CD,∠BCG=∠DCE=90°.

  所以△BCG≌△DCE.

  所以BG=DE.

  (2)仍然成立.

  證明:因?yàn)樗倪呅蜛BCD和四邊形CEFG都是正方形,

  所以GC=CE,BC=CD,∠BCD=∠GCE=90°.

  所以∠BCD+∠DCG=∠DCG+∠GCE.

  所以∠BCG=∠DCE.

  所以△BCG≌△DCE.

  所以BG=DE.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)幾何模型:條件:如圖,A、B是直線l同旁的兩個(gè)定點(diǎn).
問題:在直線l上確定一點(diǎn)P,使PA+PB的值最。
方法:作點(diǎn)A關(guān)于直線l的對稱點(diǎn)A′,連接A′B交l于點(diǎn)P,則PA+PB=A′P+PB=A′B,
由“兩點(diǎn)之間,線段最短”可知,點(diǎn)P即為所求的點(diǎn).
模型應(yīng)用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點(diǎn),P是AC上一動點(diǎn).則PB+PE的最小值是
 

(2)如圖2,∠AOB=45°,P是∠AOB內(nèi)一定點(diǎn),PO=10,Q、R分別是OA、OB上的動點(diǎn),求△PQR周長的最小值.(要求畫出示意圖,寫出解題過程)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖所示,∠A與∠B是
同旁內(nèi)
角,∠A與∠BOC是
同位
角,∠BOC與∠B是
內(nèi)錯(cuò)
角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,△ABC,△DBC,△EBC,△FBC…有公共邊BC,而頂點(diǎn)A,D,E,F(xiàn)…都在一條直線上,我們規(guī)定這樣的三角形叫同底共線的三角形.
精英家教網(wǎng)
(1)如圖②,△ABC,△PBC,△DBC是同底共線三角形,若PD=2PA,△DOC的面積與△AOB的面積的差為3,△PBC的面積為5,求△DBC和△ABC的面積.
(2)如圖②,當(dāng)AP=
1n
AD
(n表示的正整數(shù))時(shí),S△ABC=6n,S△DBC=n(n+5),求S△PBC
(3)如圖③,在同底共線三角形△ABC,△DBC,△EBC,△FBC中,若滿足AD:DE:EF=a:b:c,求△ABC,△DBC,△EBC,△FBC之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,∠1和∠3是直線
AD
AD
BC
BC
AC
AC
所截構(gòu)成的內(nèi)錯(cuò)角,∠2和∠4是直線AC,BC被AB所截構(gòu)成的
同旁內(nèi)
同旁內(nèi)
角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①,△ABC,△DBC,△EBC,△FBC…有公共邊BC,而頂點(diǎn)A,D,E,F(xiàn)…都在一條直線上,我們規(guī)定這樣的三角形叫同底共線的三角形.

(1)如圖②,△ABC,△PBC,△DBC是同底共線三角形,若PD=2PA,△DOC的面積與△AOB的面積的差為3,△PBC的面積為5,求△DBC和△ABC的面積.
(2)如圖②,當(dāng)數(shù)學(xué)公式(n表示的正整數(shù))時(shí),S△ABC=6n,S△DBC=n(n+5),求S△PBC
(3)如圖③,在同底共線三角形△ABC,△DBC,△EBC,△FBC中,若滿足AD:DE:EF=a:b:c,求△ABC,△DBC,△EBC,△FBC之間的關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案