(2012•沙灣區(qū)模擬)已知關于x的方程x2+(2m-3)x-m=0的兩個不相等的實數(shù)根為α、β滿足
1
α
+
1
β
=1
,求m的值.
分析:根據(jù)一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系得到α+β=-(2m-3),αβ=-m,則有
1
α
+
1
β
=
α+β
αβ
=
-(2m-3)
-m
=1,解得m=3,然后把m=3代入原方程后計算△的值,確定方程有解,最后得到m的值.
解答:解:根據(jù)題意得α+β=-(2m-3),αβ=-m,
1
α
+
1
β
=
α+β
αβ
=
-(2m-3)
-m
=1,
解得m=3,
方程變形為x2+3x-3=0,
∵b2-4ac=9-4×(-3)>0,
∴m的值為3.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系:若方程兩根為x1,x2,則x1+x2=-
b
a
,x1•x2=
c
a
.也考查了一元二次方程的根的判別式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•沙灣區(qū)模擬)函數(shù)y=
x+2
x
的自變量x的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•沙灣區(qū)模擬)計算:x3•x2=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•沙灣區(qū)模擬)如圖,數(shù)軸上點A表示的數(shù)為
2
+1
,點A在數(shù)軸上向左平移3個單位到達點B,點B表示的數(shù)為m.
①求m的值;
②化簡:|m+1|+(
2
-m)0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•沙灣區(qū)模擬)甲:某供電局的電力維修工甲、乙兩人要到45千米遠的A地進行電力搶修.甲騎摩托車先行t(t≥0)小時后,乙開搶修車載著所需材料出發(fā).
(1)若t=
38
小時,搶修車的速度是摩托車的1.5倍,且甲、乙兩人同時到達,求摩托車的速度;
(2)若摩托車的速度是45千米/小時,搶修車的速度是60千米/小時,且乙不能比甲晚到,則t的最大值是多少?
乙:如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD、等邊△ABE.若∠BAC=30°,EF⊥AB,垂足為F,連接DF.
求證:(1)△ABC≌△EAF;
(2)四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•沙灣區(qū)模擬)如圖,在平面直角坐標系中,拋物線y=-
23
x2+bx+c
經過A(0,-4)、B(x1,0)、C(x2,0),且x2-x1=5.
(1)求拋物線的解析式;
(2)在拋物線上是否存在一點D,使得△DBO是以OB為底邊的等腰三角形?若存在,求出點D的坐標,并判斷這個等腰三角形是否為等腰直角三角形?若不存在,請說明理由;
(3)連接AB,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于點E,設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關系式,并寫出自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案