【題目】安德利水果超市購進一批時令水果,20天銷售完畢,超市將本次銷售情況進行了跟蹤記錄,根據(jù)所記錄的數(shù)據(jù)可繪制如圖所示的函數(shù)圖象,其中日銷售量(千克)與銷售時間(天)之間的函數(shù)關(guān)系如圖甲所示,銷售單價(元/千克)與銷售時間(天)之間的函數(shù)關(guān)系如圖乙所示。

1)直接寫出之間的函數(shù)關(guān)系式;

2)分別求出第10天和第15天的銷售金額。

3)若日銷售量不低于24千克的時間段為“最佳銷售期”,則此次銷售過程中“最佳銷售期”共有多少天?在此期間銷售單價最高為多少元?

【答案】1;(2200元,270元;(3最佳銷售期共有5天,銷售單價最高為9.6

【解析】

1)分兩種情況進行討論:①0≤x≤15;②15x≤20,針對每一種情況,都可以先設(shè)出函數(shù)的解析式,再將已知點的坐標代入,利用待定系數(shù)法求解;
2)日銷售金額=日銷售單價×日銷售量.由于第10天和第15天在第10天和第20天之間,當10≤x≤20時,設(shè)銷售單價p(元/千克)與銷售時間x(天)之間的函數(shù)關(guān)系式為p=mx+n,由點(10,10),(208)在p=mx+n的圖象上,利用待定系數(shù)法求得px的函數(shù)解析式,繼而求得10天與第15天的銷售金額;
3)日銷售量不低于24千克,即y≥24.先解不等式2x≥24,得x≥12,再解不等式-6x+120≥24,得x≤16,則求出最佳銷售期共有5天;然后根據(jù)p=x+1210≤x≤20),利用一次函數(shù)的性質(zhì),即可求出在此期間銷售時單價的最高值.

解:(1) 分兩種情況:
①當0≤x≤15時,設(shè)日銷售量y與銷售時間x的函數(shù)解析式為y=k1x,
∵直線y=k1x過點(1530),
15k1=30,解得k1=2,
y=2x0≤x≤15);
②當15x≤20時,設(shè)日銷售量y與銷售時間x的函數(shù)解析式為y=k2x+b,
∵點(1530),(20,0)在y=k2x+b的圖象上,
,解得: ,
y=-6x+12015x≤20);
綜上,可知yx之間的函數(shù)關(guān)系式為:

(2) )∵第10天和第15天在第10天和第20天之間,
∴當10≤x≤20時,設(shè)銷售單價p(元/千克)與銷售時間x(天)之間的函數(shù)解析式為p=mx+n,
∵點(1010),(20,8)在p=mx+n的圖象上,
,解得: ,
10≤x≤20),

時,銷售單價為10元,銷售金額為10×20200();當時,銷售單價為9元,銷售金額為9×30270(); 

(3) 若日銷售量不低于24千克,則,當時,,由;當時,,由,得,∴,

最佳銷售期共有161215()

,

的增大而減小,∴當時,

12有最大值,此時,即銷售單價最高為9.6

故答案為:(1;(2200元,270元;(3最佳銷售期共有5天,銷售單價最高為9.6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A,B,C,D,E等著名景點,該市旅游部門統(tǒng)計繪制出2018·小長假期間旅游情況統(tǒng)計圖,根據(jù)圖中信息回答下列問題:

(1)2018·期間,該市景點共接待游客   萬人,扇形統(tǒng)計圖中C景點所對應(yīng)的圓心角的度數(shù)是   ,并補全條形統(tǒng)計圖.

(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計2018·國慶節(jié)將有80萬游客選擇該市旅游,E景點每張門票是25元,請估計2018·國慶期間E景點門票收入約是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某圖書館計劃選購甲、乙兩種圖書.已知甲圖書每本價格是乙圖書每本價格的2.5倍,用800元單獨購買甲圖書比用800元單獨購買乙圖書要少24本.

(1)甲、乙兩種圖書每本價格分別為多少元?

(2)如果該圖書館計劃購買乙圖書的本數(shù)比購買甲圖書本數(shù)的2倍多8本,且用于購買甲、乙兩種圖書的總經(jīng)費不超過1060元,那么該圖書館最多可以購買多少本乙圖書?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》中的一個問題.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,適與岸齊問水深、葭長各幾何譯文大意是:如圖,有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池邊的中點,它的頂端恰好到達池邊的水面.問水的深度與這根蘆葦?shù)拈L度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級下冊教材第69頁習(xí)題14:四邊形ABCD是正方形,點E是邊BC的中點,∠AEF90°,且EF交正方形外角的平分線CF于點F.求證:AEEF.這道題對大多數(shù)同學(xué)來說,印象深刻數(shù)學(xué)課代表在做完這題后,她把這題稍作改動,如圖,四邊形ABCD是正方形,點E是邊BC的三等分點,∠AEF90°,且EF交正方形外角的平分線CF于點F,那么AEEF還成立嗎?如果成立,給予證明,如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做物不知數(shù)問題,原文如下:有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.同物幾何?

即:一個整數(shù)除以32,除以53,除以72,則這個整數(shù)為__________________.(寫出符合題意且不超過3003個正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要從王同學(xué)和李同學(xué)中挑選一人參加縣知識競賽在五次選拔測試中他倆的成績?nèi)缦卤恚?/span>

1

2

3

4

5

王同學(xué)

60

75

100

90

75

李同學(xué)

70

90

100

80

80

根據(jù)上表解答下列問題:

1)完成下表:

姓名

平均成績(分)

中位數(shù)(分)

眾數(shù)(分)

方差

王同學(xué)

80

75

75

_____

李同學(xué)

   

   

   

   

2)在這五次測試中,成績比較穩(wěn)定的同學(xué)是誰若將80分以上(含80分)的成績視為優(yōu)秀,則王同學(xué)、李同學(xué)在這五次測試中的優(yōu)秀率各是多少?

3)歷屆比賽表明,成績達到80分以上(含80分)就很可能獲獎,成績達到90分以上(含90分)就很可能獲得一等獎,那么你認為應(yīng)選誰參加比賽比較合適?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了安全,請勿超速.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時,為了檢測車輛是否超速,在公路MN旁設(shè)立了觀測點C,從觀測點C測得一小車從點A到達點B行駛了5秒鐘,已知∠CAN=45°,CBN=60°,BC=200米,此車超速了嗎?請說明理由.

(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB=4,E,F分別是AB、BC的中點,PAC上一動點,則PF+PE的最小值是(

A. 3B. C. 4D.

查看答案和解析>>

同步練習(xí)冊答案