【題目】如圖,在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上.將△ABC向左平移2格,再向上平移4格.(10分)
(1)請在圖中畫出平移后的△A′B′C′。
(2)再在圖中畫出△A′B′C′的高C′D′,并求出△ABC的面積.
科目:初中數(shù)學 來源: 題型:
【題目】王霞和爸爸、媽媽到人民公園游玩,回到家后,她利用平面直角坐標系畫出了公園的景區(qū)地圖,如圖所示.可是她忘記了在圖中標出原點和x軸.y軸.只知道游樂園D的坐標為(2,﹣2),請你幫她畫出坐標系,并寫出其他各景點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實驗與探究:
()如圖,直線為第一、三象限的角平分線,觀察易知關于直線的對稱點的坐標為,請在圖中分別標明、關于直線的對稱點、的位置,并寫出他們的坐標: __________、__________.
()結合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內任一點關于第一、三象限的角平分線的對稱點的坐標為__________ (不必證明).
()已知兩點、,在直線上是否存在一點,使點到、兩點的距離之和最小,并求出最小距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D在邊AC上,下列條件中,能判斷△BDC與△ABC相似的是 ( )
A. AB·CB=CA·CD B. AB·CD=BD·BC C. BC2=AC·DC D. BD2=CD·DA
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點A在射線CE上,∠C=∠D.
(1)如圖1,若AC∥BD,求證:AD∥BC;
(2)如圖2,若∠BAC=∠BAD,BD⊥BC,請?zhí)骄?/span>∠DAE與∠C的數(shù)量關系,寫出你的探究結論,并加以證明;
(3)如圖3,在(2)的條件下,過點D作DF∥BC交射線于點F,當∠DFE=8∠DAE時,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=45°,則∠ACB的度數(shù)為 ;
②若∠ACB=140°,求∠DCE的度數(shù);
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關系,并說明理由.
(3)當∠ACE<180°且點E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是某一蓄水池每小時的排水量V(m3/h)與排完水池中的水所用的時間t(h)之間的函數(shù)關系圖象.
①請你根據(jù)圖象提供的信息求出此蓄水池的蓄水量;
②寫出此函數(shù)的解析式;
③若要6h排完水池中的水,那么每小時的排水量應該是多少?
④如果每小時排水量是5m3,那么水池中的水將要多少小時排完?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:AB∥CD,直線l交AB、CD分別于點E、F,點M在EF上,N是直線CD上的一個動點(點N不與F重合)
(1)當點N在射線FC上運動時,∠FMN+∠FNM=∠AEF,說明理由;
(2)當點N在射線FD上運動時,∠FMN+∠FNM與∠AEF有什么關系并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com