【題目】已知在等腰直角△ABC中,∠BAC=90°,點(diǎn)D從點(diǎn)B出發(fā)沿射線BC方向移動(dòng).在AD右側(cè)以AD為腰作等腰直角△ADE,∠DAE=90°.連接CE.
(1)求證:△ACE≌△ABD;
(2)點(diǎn)D在移動(dòng)過程中,請(qǐng)猜想CE,CD,DE之間的數(shù)量關(guān)系,并說明理由;
(3)若AC=,當(dāng)CD=1時(shí),結(jié)合圖形,請(qǐng)直接寫出DE的長(zhǎng) .
【答案】(1)見解析;(2)見解析;(3)或
【解析】
(1)由等腰直角三角形的性質(zhì)可得∠BAC=∠DAE=90°,BA=CA,AD=AE,然后根據(jù)同角的余角相等可得∠BAD=∠CAE,進(jìn)而利用SAS可證明△ABD≌△ACE;
(2)當(dāng)點(diǎn)D在線段BC上時(shí),由三角形全等的性質(zhì)可得∠ABD=∠ACE=45°,易得∠ECD=90°,然后根據(jù)勾股定理可得結(jié)論,同理可得點(diǎn)D在線段BC的延長(zhǎng)線上時(shí)CE,CD,DE之間的數(shù)量關(guān)系;
(3)當(dāng)點(diǎn)D在線段BC上時(shí),首先求出BC,然后可得BD的長(zhǎng),根據(jù)全等三角形的性質(zhì)可得CE的長(zhǎng),利用勾股定理可得答案,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),同理可求DE.
解:(1)∵△ABC,△ADE是等腰直角三角形,
∴∠BAC=∠DAE=90°,BA=CA,AD=AE,
∴∠BAD+∠DAC =∠CAE+∠DAC,
∴∠BAD=∠CAE,
在△ABD與△ACE中,BA=CA,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE(SAS);
(2)當(dāng)點(diǎn)D在線段BC上時(shí),
∵△ABD≌△ACE,
∴∠ABD=∠ACE=45°,
∴∠ECD=∠ACE+∠ACB=90°,
∴△ECD是直角三角形,
∴CE2+CD2=DE2,
當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖2,同理可得:CE2+CD2=DE2;
(3)當(dāng)點(diǎn)D在線段BC上時(shí),
∵△ABD≌△ACE,AC=,CD=1,
∴BC=AC=2,
∴BD=BC-CD=1,
∴CE=1,
∴,
當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖2,同理可得CE=BD= BC+CD=3,
∴,
綜上所述,DE的長(zhǎng)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠B=∠C=90°,E是BC的中點(diǎn),DE平分∠ADC.
(1)求證:AE平分∠BAD.
(2)求證:AD=AB+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將直角三角板ABC繞直角頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度,得到△DCE,其中CE與AB交于點(diǎn)F,∠ABC=30°,連接BE,若△BEF為等腰三角形(即有兩內(nèi)角相等),則旋轉(zhuǎn)角的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE和△BC′F的周長(zhǎng)之和為( 。
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:
甲 | 乙 | |
進(jìn)價(jià)(元/部) | 4000 | 2500 |
售價(jià)(元/部) | 4300 | 3000 |
該商場(chǎng)計(jì)劃購進(jìn)兩種手機(jī)若干部,共需15.5萬元,預(yù)計(jì)全部銷售后可獲毛利潤(rùn)共2.1萬元.
(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)該商場(chǎng)計(jì)劃購進(jìn)甲、乙兩種手機(jī)各多少部?
(2)通過市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少甲種手機(jī)的購進(jìn)數(shù)量,增加乙種手機(jī)的購進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購進(jìn)這兩種手機(jī)的總資金不超過16萬元,該商場(chǎng)怎樣進(jìn)貨,使全部銷售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A(3,0),B(﹣1,0),C(0,﹣3).
(1)求該拋物線的解析式;
(2)若以點(diǎn)A為圓心的圓與直線BC相切于點(diǎn)M,求切點(diǎn)M的坐標(biāo);
(3)若點(diǎn)Q在x軸上,點(diǎn)P在拋物線上,是否存在以點(diǎn)B,C,Q,P為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACB=∠ADB=90°,M、N 分別是 AB、CD 的中點(diǎn).
(1)求證:MN⊥CD;
(2)若 AB=50,CD=48,求 MN 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若等腰三角形的頂角為36°,則這個(gè)三角形就是黃金三角形。如圖,在△ABC中,BA=BC,D 在邊 CB 上,且 DB=DA=AC。
(1)如圖1,寫出圖中所有的黃金三角形,并證明;
(2)若 M為線段 BC上的點(diǎn),過 M作直線MH⊥AD于 H,分別交直線 AB,AC與點(diǎn)N,E,如圖 2,試寫出線段 BN、CE、CD之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課間,小剛拿著老師的等腰直角三角板玩,一不小心掉到垂直地面的兩個(gè)木塊之間,如圖所示:
(1)求證:△ADC≌△CEB;
(2)若測(cè)得AD=15cm,BE=10cm,求兩個(gè)木塊之間的距離DE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com