【題目】為了解某地區(qū)中學(xué)生一周課外閱讀時長的情況,隨機抽取部分中學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,將閱讀時長分為四類:2小時以內(nèi),2~4小時(含2小時),4~6小時(含4小時),6小時及以上,并繪制了如圖所示尚不完整的統(tǒng)計圖.
(1)請補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中,課外閱讀時長“4~6小時”對應(yīng)的圓心角度數(shù)為 °;
(3)若該地區(qū)共有20000名中學(xué)生,估計該地區(qū)中學(xué)生一周課外閱讀時長不少于4小時的人數(shù).
【答案】(1)補全條形統(tǒng)計圖見解析;(2)144;(3)估計該地區(qū)中學(xué)生一周課外閱讀時長不少于4小時的人數(shù)為1300人
【解析】
(1)用閱讀時間為6小時及以上的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù),然后計算出閱讀時間為2~4小時(含2小時)的人數(shù)和閱讀時間為4~6小時(含4小時)的人數(shù),再補全條形統(tǒng)計圖;
(2)用360度乘以課外閱讀時長“4~6小時”的人數(shù)所占的百分比即可;
(3)用20000乘以樣本中課外閱讀時長不少于4小時的人數(shù)所占的百分比即可.
解:(1)50÷25%=200,
所以調(diào)查的總?cè)藬?shù)為200人,
閱讀時間為2~4小時(含2小時)的人數(shù)為200×20%=40(人),
閱讀時間為4~6小時(含4小時)的人數(shù)為200﹣30﹣50﹣40=80(人),
補全條形統(tǒng)計圖為:
(2)扇形統(tǒng)計圖中,課外閱讀時長“4~6小時”對應(yīng)的圓心角度數(shù)=360°×=144°;
故答案為:144;
(3)20000×=1300,
所以估計該地區(qū)中學(xué)生一周課外閱讀時長不少于4小時的人數(shù)為1300人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中.
(1)寫出點A,點B的坐標(biāo)A( , ),B( , );
(2)S△ABC= ;
(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A1B1C1,在圖中畫出△A1B1C1的位置,并寫出點A1、B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學(xué)等式,例如圖1可以得到,請解答下列問題:
(1)圖2所表示的數(shù)學(xué)等式為_____________________;
(2)利用(1)得到的結(jié)論,解決問題: 若,求的值;
(3)如圖3,將兩個邊長分別為a和b的正方形拼在一起,三點在同一直線上,連接,若兩正方形的邊長滿足求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)()×(-6)+(-)2÷(-)3
(2)-12018-(1-0.5)××[2-(-3)3]
(3)(-1+2-1)÷(-).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺進(jìn)價分別為190元、160元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1720元 |
第二周 | 4臺 | 10臺 | 2960 元 |
(進(jìn)價、售價均保持不變,利潤=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號的電風(fēng)扇的銷售單價;
(2)若超市準(zhǔn)備用不多于5100元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=4,AC=6,BC=9,點M為AB的中點,在線段AC上取點N,使△AMN與△ABC相似,求MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,BD為∠ABC的角平分線,DE、DF分別是∠ADB和∠ADC的角平分線,且∠BDF=α,則以下∠A與∠C的關(guān)系正確的是( 。
A.∠A=2∠C+αB.∠A=2∠C+2αC.∠A=∠C+αD.∠A=∠C+2α
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1的解析式為y=-x,直線l2與l1交于點A(a,-a),與y軸交于點B(0,b),其中a,b滿足(a+3)2+=0.
(1)求直線l2的解析式;
(2)在平面直角坐標(biāo)系中第二象限有一點P(m,5),使得S△AOP=S△AOB,請求出點P的坐標(biāo);
(3)已知平行于y軸左側(cè)有一動直線,分別與l1,l2交于點M、N,且點M在點N的下方,點Q為y軸上一動點,且△MNQ為等腰直角三角形,請求出滿足條件的點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與y軸交于點B(0,2),與反比例函數(shù)y=的圖象交于點A(4,﹣1).
(1)求反比例函數(shù)的表達(dá)式和一次函數(shù)表達(dá)式;
(2)如果點P是x軸上的一點,且△ABP的面積是3,求P點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com