【題目】在矩形ABCD中,點O在對角線BD上,以OD為半徑的O與AD、BD分別交于點E、F,且ABE=DBC.

(1)求證:BE與O相切;

(2)若,CD=2,求O的半徑.

【答案】(1)連接OE,根據(jù)矩形的性質(zhì)可得ADBC,C=A=90°,即可得到3=DBC,ABE+1=90°,再結(jié)合OD=OE,ABE=DBC可得2=3=ABE,從而可以證得結(jié)論;(2)

【解析】

試題(1)連接OE,根據(jù)矩形的性質(zhì)可得ADBC,C=A=90°,即可得到3=DBC,ABE+1=90°,再結(jié)合OD=OE,ABE=DBC可得2=3=ABE,從而可以證得結(jié)論

(2)ABE =DBC可得,即可求得DB的長,再根據(jù)勾股定理求得DE的長,

連接EF,根據(jù)圓周角定理可得DEF=A=90°,再證得,根據(jù)相似三角形的性質(zhì)即可求得結(jié)果.

(1連接OE

四邊形ABCD是矩形

ADBC,C=A=90°

3=DBC,ABE+1=90°

OD=OE,ABE=DBC

2=3=ABE

2+1=90°

BEO=90°

E在O

BE與O相切;

(2ABE =DBC

DC=2,C=90°

DB=6

A=90°

BE=3AE

AB=CD=2

利用勾股定理,得,

連接EF

DF是O的直徑,

∴∠DEF=A=90°

ABEF

/p>

∴⊙O的半徑為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知a2+10b2+c24aba2bc,則a2b+c_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A是反比例函數(shù)y的圖象在第一象限上的動點,連結(jié)AO并延長交另一分支于點B,以AB為邊作等邊ABC使點C落在第二象限,且邊BCx軸于點D,若ACDABD的面積之比為12,則點C的坐標為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線.

(1)求證:該拋物線與x軸總有交點;

(2)若該拋物線與x軸有一個交點的橫坐標大于3且小于5,求m的取值范圍;

(3)設拋物線軸交于點M,若拋物線與x軸的一個交點關于直線的對稱點恰好是點M,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E、F分別在線BC、CD上運動,且滿足∠EAF45°,AE、AF分別與BD相交于點M、N.下列說法中:BE+DFEFA到線段EF的距離一定等于正方形的邊長;tanBAE,則tanDAF;BE2,DF3,則SAEF18.其中結(jié)論正確的是__(將正確的序號寫在橫線上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC為等邊三角形,點E為△ABC內(nèi)部一點,△ABE繞點B順時針旋轉(zhuǎn)60°得到△CBD,且A、D、E三點在同一直線上,ADBC交于點F,則以下結(jié)論中:①△BED為等邊三角形;②△BED與△ABC的相似比始終不變;③△BDE∽△ADB;④當∠BAE45°時, 其中正確的有_____(填寫序號即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場舉辦抽獎活動,規(guī)則如下:在不透明的袋子中有2個紅球和2個黑球,這些球除顏色外都相同,顧客每次摸出一個球,若摸到紅球,則獲得1份獎品,若摸到黑球,則沒有獎品。

1)如果小芳只有一次摸球機會,那么小芳獲得獎品的概率為  

2)如果小芳有兩次摸球機會(摸出后不放回),求小芳獲得2份獎品的概率。(請用畫樹狀圖列表等方法寫出分析過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,E、F分別是AD、BC上的點,將平行四邊形ABCD沿EF所在直線翻折,使點B與點D重合,且點A落在點A′處.

(1)求證:A′ED≌△CFD;

(2)連結(jié)BE,若∠EBF=60°,EF=3,求四邊形BFDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學社團成員想利用所學的知識測量某廣告牌的寬度圖中線段MN的長,直線MN垂直于地面,垂足為點在地面A處測得點M的仰角為、點N的仰角為,在B處測得點M的仰角為米,且AB、P三點在一直線上請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.

參考數(shù)據(jù):,,,,

查看答案和解析>>

同步練習冊答案