【題目】在一張日歷上,用正方形任意圈出四個(gè)數(shù)和為56,其中最大數(shù)為( )
A. 8 B. 10 C. 18 D. 19
【答案】C
【解析】
設(shè)最大的一個(gè)數(shù)為x,則其他三個(gè)數(shù)分別為x-7,x-8,x-1,根據(jù)它們四個(gè)數(shù)的和為56列出方程,求解即可.
設(shè)最大的一個(gè)數(shù)為x,則其他三個(gè)數(shù)分別為x-7,x-8,x-1,
根據(jù)題意得:x-8+x-7+x-1+x=56,
解得:x=18,
則最大的一個(gè)數(shù)為18.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將關(guān)于x的一元二次方程x2+px+q=0變形為x2=﹣px﹣q,就可將x2表示為關(guān)于x的一次多項(xiàng)式,從而達(dá)到“降次”的目的,我們稱(chēng)這樣的方法為“降次法”,已知x2﹣x﹣1=0,可用“降次法”求得x4﹣3x+2014的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列條件中不能判定三角形全等的是( )
A. 兩角和其中一角的對(duì)邊對(duì)應(yīng)相等 B. 三條邊對(duì)應(yīng)相等
C. 兩邊和它們的夾角對(duì)應(yīng)相等 D. 三個(gè)角對(duì)應(yīng)相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)棱柱有20個(gè)頂點(diǎn),每條側(cè)棱長(zhǎng)6cm,底面每條邊長(zhǎng)是2m,則所有側(cè)棱長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)進(jìn)行社會(huì)調(diào)查,隨機(jī)抽查了某小區(qū)的40戶(hù)家庭的年收入(萬(wàn)元)情況,并繪制了如圖不完整的頻數(shù)直方圖,每組包括前一個(gè)邊界值,不包括后一個(gè)邊界值.
(1)補(bǔ)全頻數(shù)直方圖.
(2)年收入的中位數(shù)落在哪一個(gè)收入段內(nèi)?
(3)如果每一組年收入均以最低計(jì)算,這40戶(hù)家庭的年平均收入至少為多少萬(wàn)元?
(4)如果該小區(qū)有1200戶(hù)住戶(hù),請(qǐng)你估計(jì)該小區(qū)有多少家庭的年收入低于18萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知0<a<1,-1<b<0,那么在代數(shù)式a-b,a+b,a+b2,a2+b中,對(duì)任意的a、b,對(duì)應(yīng)的代數(shù)式的值最大的是( )
A. a+b B. a-b C. a+b2 D. a2+b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC中,AC=BC,∠A=30°,點(diǎn)D在AB邊上,且∠ADC=45°.
(1)求∠BCD的度數(shù);
(2)將圖1中的△BCD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到△BC′D′,當(dāng)點(diǎn)D′恰好落在BC邊上時(shí),如圖2所示,連接C′C并延長(zhǎng)交AB于點(diǎn)E.
①求∠C′CB的度數(shù);
②求證:△C′BD′≌△CAE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB邊的垂直平分線(xiàn)交BC于D,AC邊的垂直平分線(xiàn)交BC于E, 與相交于點(diǎn)O,△ADE的周長(zhǎng)為6cm.
(1)求BC的長(zhǎng);
(2)分別連結(jié)OA、OB、OC,若△OBC的周長(zhǎng)為16cm,求OA的長(zhǎng);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com