【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點(diǎn),連接CE并延長(zhǎng)交AD于F.求證:
(1)△AEF≌△BEC;
(2)四邊形BCFD是平行四邊形.
【答案】
(1)證明∵E是AB中點(diǎn),∴AE=BE,
∵△ABD是等邊三角形,
∴∠DAB=60°,
∵∠CAB=30°,∠ACB=90°,
∴∠ABC=60°,
在△AEF和△BEC中
,
∴△AEF≌△BEC(ASA)
(2)證明∵∠DAC=∠DAB+∠BAC,∠DAB=60°,∠CAB=30°,
∴∠DAC=90°,
∴AD∥BC,
∵E是AB的中點(diǎn),∠ACB=90°,
∴EC=AE=BE,
∴∠ECA=30°,∠FEA=60°,
∴∠EFA=∠BDA=60°,
∴CF∥BD,
∴四邊形BCFD是平行四邊形.
【解析】(1)利用等邊三角形的性質(zhì)得出∠DAB=60°,即可得出∠ABC=60°,進(jìn)而求出△AEF≌△BEC(ASA);(2)利用平行線的判定方法以及直角三角形的性質(zhì)得出CF∥BD,進(jìn)而求出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)45+(﹣20);
(2)(﹣8)﹣(﹣1);
(3)|﹣10|+|+8|;
(4)(﹣12)﹣5+(﹣14)﹣(﹣39);
(5)0.47﹣4﹣(﹣1.53)﹣1;
(6)36﹣76+(﹣23)﹣105;
(7)﹣20+|﹣14|﹣(﹣18)﹣13;
(8)(+1.75)+(﹣)+(+)+(+1.05)+(﹣)+(+2.2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣ x2+bx﹣6的圖象與x軸交于一點(diǎn)A(2,0),與y軸交于點(diǎn)B,對(duì)稱軸與x軸交于點(diǎn)C,連接BA,BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.
(3) 點(diǎn)A,B,C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)
(4) 請(qǐng)問(wèn):3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ADE都是等腰三角形,BC、DE分別是這兩個(gè)等腰三角形的底邊,且∠BAC=∠DAE.
(1)求證:BD=CE;
(2)連接DC.如果CD=CE,試說(shuō)明直線AD垂直平分線段BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點(diǎn)E,O為對(duì)角線AC、BD的交點(diǎn),且∠CAE=15° .
(1)求證:△AOB為等邊三角形;
(2)求∠BOE度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣1,0),點(diǎn)C(0,5),另拋物線經(jīng)過(guò)點(diǎn)(1,8),M為它的頂點(diǎn).
(1)求拋物線的解析式;
(2)求△MCB的面積S△MCB .
(3)在坐標(biāo)軸上,是否存在點(diǎn)N,滿足△BCN為直角三角形?如存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)N.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD內(nèi)一點(diǎn)P,AB=5,BP=2,把△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△CBP',則PP'的長(zhǎng)為( )
A.2
B.
C.3
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點(diǎn).
觀察圖像可知:
①當(dāng)x=﹣3或1時(shí),y1=y2;
②當(dāng)﹣3<x<0或x>1時(shí),y1>y2 , 即通過(guò)觀察函數(shù)的圖像,可以得到不等式ax+b> 的解集.
有這樣一個(gè)問(wèn)題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識(shí)的經(jīng)驗(yàn),對(duì)求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.
下面是他的探究過(guò)程,請(qǐng)將(1)、(2)、(3)補(bǔ)充完整:
(1)①將不等式按條件進(jìn)行轉(zhuǎn)化:
當(dāng)x=0時(shí),原不等式不成立;
當(dāng)x>0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1>;
當(dāng)x<0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1<;
②構(gòu)造函數(shù),畫出圖像
設(shè)y3=x2+4x﹣1,y4= , 在同一坐標(biāo)系中分別畫出這兩個(gè)函數(shù)的圖像.
雙曲線y4=如圖2所示,請(qǐng)?jiān)诖俗鴺?biāo)系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(2)確定兩個(gè)函數(shù)圖像公共點(diǎn)的橫坐標(biāo)
觀察所畫兩個(gè)函數(shù)的圖像,猜想并通過(guò)代入函數(shù)解析式驗(yàn)證可知:滿足y3=y4的所有x的值為
(3)借助圖像,寫出解集
結(jié)合(1)的討論結(jié)果,觀察兩個(gè)函數(shù)的圖像可知:不等式x3+4x2﹣x﹣4>0的解集為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com