已知關(guān)于x的一元二次方程x2+2ax+b2=0,a>0,b>0.
(1)若方程有實(shí)數(shù)根,試確定a,b之間的大小關(guān)系;
(2)若a:b=2:,且2x1-x2=2,求a,b的值;
(3)在(2)的條件下,二次函數(shù)y=x2+2ax+b2的圖象與x軸的交點(diǎn)為A、C(點(diǎn)A在點(diǎn)C的左側(cè)),與y軸的交點(diǎn)為B,頂點(diǎn)為D.若點(diǎn)P(x,y)是四邊形ABCD邊上的點(diǎn),試求3x-y的最大值.
【答案】分析:(1)根據(jù)方程有實(shí)數(shù)根可以得到其根的判別式為非負(fù)數(shù),然后再根據(jù)a>0,b>0作出判斷即可;
(2)利用a與b的比值分別設(shè)出a和b,利用根與系數(shù)的關(guān)系用設(shè)出的未知數(shù)表示出方程的兩個(gè)解,代入的2x1-x2=2中求得a與b的值即可;
(3)將上題中求得的a與b的值代入到函數(shù)中確定函數(shù)的解析式,然后求得與x軸的交點(diǎn)坐標(biāo),與y軸的交點(diǎn)坐標(biāo)和頂點(diǎn)坐標(biāo),據(jù)此可以求出3x-y的最大值.
解答:解:(1)∵關(guān)于x的一元二次方程x2+2ax+b2=0有實(shí)數(shù)根,
∴△=(2a)2-4b2≥0,
有a2-b2≥0,
(a+b)(a-b)≥0.
∵a>0,b>0,
∴a+b>0,a-b≥0.
∴a≥b.

(2)∵a:b=2:,
∴設(shè)
解關(guān)于x的一元二次方程x2+4kx+3k2=0,得x=-k或-3k.
當(dāng)x1=-k,x2=-3k時(shí),由2x1-x2=2得k=2.
當(dāng)x1=-3k,x2=-k時(shí),由2x1-x2=2得(不合題意,舍去).


(3)當(dāng)時(shí),
二次函數(shù)y=x2+8x+12與x軸的交點(diǎn)坐標(biāo)分別為A(-6,0)、C(-2,0),
與y軸交點(diǎn)坐標(biāo)為B(0,12),頂點(diǎn)坐標(biāo)D為(-4,-4).
設(shè)z=3x-y,則y=3x-z.
畫出函數(shù)y=x2+8x+12和y=3x的圖象,若直線y=3x平行移動(dòng)時(shí),如圖
可以發(fā)現(xiàn)當(dāng)直線經(jīng)過點(diǎn)C時(shí)符合題意,此時(shí)最大z的值等于-6
點(diǎn)評(píng):本題考查了函數(shù)綜合知識(shí),函數(shù)綜合題是初中數(shù)學(xué)中覆蓋面最廣、綜合性最強(qiáng)的題型.近幾年的中考?jí)狠S題多以函數(shù)綜合題的形式出現(xiàn).解決函數(shù)綜合題的過程就是轉(zhuǎn)化思想、數(shù)形結(jié)合思想、分類討論思想、方程思想的應(yīng)用過程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次x2+(2k-3)x+k2=0的兩個(gè)實(shí)數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次x2-6x+k+1=0的兩個(gè)實(shí)數(shù)根x1,x2,
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第23章《一元二次方程》中考題集(23):23.3 實(shí)踐與探索(解析版) 題型:解答題

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習(xí)冊(cè)答案