【題目】已知⊙O及⊙O外一點P.
(1)方法證明:如何用直尺和圓規(guī)過點P作⊙O的一條切線呢?小明設(shè)計了如圖①所示的方法:
①連接OP,以OP為直徑作⊙O′;
②⊙O′與⊙O相交于點A,作直線PA.
則直線PA即為所作的過點P的⊙O的一條切線.
請證明小明作圖方法的正確性.
(2)方法遷移:如圖②,已知線段l,過點P作一條直線與⊙O相交,且該直線被⊙O所截得的弦長等于l.(保留作圖痕跡,不要求寫作法和證明)
【答案】(1)見解析;(2)見解析
【解析】
(1)連接OA,只要證明OA⊥PA即可.
(2)在大圓⊙O上取點E,截取EF=線段l,交大圓⊙O于點F,作EF的垂直平分線OC,垂足為C,以點O為圓心,OC為半徑作小圓⊙O,連接OP,以OP為直徑作圓⊙A,交小圓⊙O于點D,連接OD、PD并延長到Q,與大圓⊙O交于點G、H,則OD⊥PD,垂足為D,由OD=OC,可得GH=EF=線段l.
(1)證明:如圖①中,連接OA.
∵OP是直徑,
∴∠OAP=90°,
∴OA⊥PA,
∴PA是⊙O的切線.
(2)解:作法:在大圓⊙O上取點E,截取EF=線段l,交大圓⊙O于點F,
作EF的垂直平分線OC,垂足為C,
以點O為圓心,OC為半徑作小圓⊙O,
連接OP,以OP為直徑作圓⊙A,
交小圓⊙O于點D,
連接OD,PD并延長到Q,與大圓⊙O交于點G、H,
因為OP是⊙A的直徑,
所以∠PDO=90°.則OD⊥PD,垂足為D,
∵OD=OC,
∴GH=EF=線段l.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點,使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由;
(3)假若△PAC為直角三角形,直接寫出點P坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,函數(shù)y(x>0)的圖象與直線y=2x+1交于點A(1,m)
(1)求k,m的值;
(2)已知點P(0,n)(n>0),過點P作平行于x軸的直線,交直線y=2x+1于點B,交函數(shù)y(x>0)的圖象于點C.橫、縱坐標都是整數(shù)的點叫做整點.
①當n=1時,寫出線段BC上的整點的坐標;
②若y(x>0)的圖象在點A,C之間的部分與線段AB,BC所圍成的區(qū)域內(nèi)(包括邊界)恰有6個整點,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(點在點左側(cè)),與軸交于點的面積為.動點從點出發(fā)沿方向以每秒個單位的速度向點運動,過作軸交于.交拋物線于.
求拋物線的解析式.
當最大時,求運動的時間.
經(jīng)過多長時間,點到點、點的距離相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀:設(shè)試驗結(jié)果落在某個區(qū)域S中每一點的機會均等,用A表示事件“試驗結(jié)果落在S中的一個小區(qū)域M中”,那么事件A發(fā)生的概率P(A).在桌面上放一張50 cm×50 cm的正方形白紙ABCD,⊙O是它的內(nèi)切圓,小明隨機地將1000粒大米撒到該白紙上,其中落在圓內(nèi)的大米有800粒,由此可得圓周率的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,點為軸正半軸上一點,且,的面積是,則_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了解七年級學生喜歡球類活動的情況,采取抽樣調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面隨機調(diào)查了部分七年級學生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:
(1)求被抽查學生人數(shù),將條形統(tǒng)計圖補充完整;
(2)求出扇形統(tǒng)計圖中,排球部分對應(yīng)的圓心角度數(shù);
(3)如果該中學七年級共有名學生,請你估計七年級學生中喜歡排球的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如圖1,當DE∥BC時,有DB EC.(填“>”,“<”或“=”)
(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點A順時針旋轉(zhuǎn)α(0°<α<180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請說明理由.
(3)拓展運用:如圖3,P是等腰直角三角形ABC內(nèi)一點,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l1:y=k1x+b過A(0,﹣3),B(5,2),直線l2:y=k2x+2.
(1)求直線l1的表達式;
(2)當x≥4時,不等式k1x+b>k2x+2恒成立,請寫出一個滿足題意的k2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com