如圖,平行四邊形ABCD中,點(diǎn)E、F、G、H分別在AB、BC、CD、AD邊上且AE=CG,AH=CF.
(1)求證:四邊形EFGH是平行四邊形;
(2)如果AB=AD,且AH=AE,求證:四邊形EFGH是矩形.

【答案】分析:(1)易證得△AEH≌△CGF,從而證得BE=DG,DH=BF.故有,△BEF≌△DGH,根據(jù)兩組對(duì)邊分別相等的四邊形是平行四邊形而得證.
(2)由題意知,平行四邊形ABCD是菱形,連接AC,BD,則有AC⊥BD,由AB=AD,且AH=AE可證得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由1知四邊形HGFE是平行四邊形,故四邊形HGFE是矩形.
解答:證明:(1)在平行四邊形ABCD中,∠A=∠C,(1分)
又∵AE=CG,AH=CF,
∴△AEH≌△CGF.(2分)
∴EH=GF.(1分)
在平行四邊形ABCD中,AB=CD,AD=BC,
∴AB-AE=CD-CG,AD-AH=BC-CF,
即BE=DG,DH=BF.
又∵在平行四邊形ABCD中,∠B=∠D,∴△BEF≌△DGH.(1分)
∴GH=EF.(1分)
∴四邊形EFGH是平行四邊形.(1分)

(2)解法一:在平行四邊形ABCD中,AB∥CD,AB=CD.
設(shè)∠A=α,則∠D=180°-α.
∵AE=AH,∴∠AHE=∠AEH=.(1分)∵AD=AB=CD,AH=AE=CG,
∴AD-AH=CD-CG,即DH=DG.(1分)
∴∠DHG=∠DGH=.(1分)
∴∠EHG=180°-∠DHG-∠AHE=90°.(1分)
又∵四邊形EFGH是平行四邊形,
∴四邊形EFGH是矩形.(1分)

解法二:連接BD,AC.
∵AH=AE,AD=AB,
,∴HE∥BD,(1分)
同理可證,GH∥AC,(1分)
∵四邊形ABCD是平行四邊形且AB=AD,
∴平行四邊形ABCD是菱形,(1分)
∴AC⊥BD,∴∠EHG=90°.(1分)
又∵四邊形EFGH是平行四邊形,
∴四邊形EFGH是矩形.(1分)
點(diǎn)評(píng):本題利用了平行四邊形的判定和性質(zhì),全等三角形的判定和性質(zhì),菱形的判定和性質(zhì),矩形的判定求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二精英家教網(wǎng)次方程x2-7x+12=0的兩個(gè)根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點(diǎn),且S△AOE=
16
3
,求經(jīng)過D、E兩點(diǎn)的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線BE交AD于E點(diǎn),AB=3,ED=1,則平行四邊形ABCD的周長(zhǎng)是
14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線AC、BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度后,分別交BC、AD于點(diǎn)E、F.
精英家教網(wǎng)
(1)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;
(2)當(dāng)旋轉(zhuǎn)角為90°時(shí),在圖2中畫出直線AC旋轉(zhuǎn)后的位置并證明此時(shí)四邊形ABEF是平行四邊形;
(3)在直線AC旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說明理由;如果能,說明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).(圖供畫圖或解釋時(shí)使用)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD的兩條對(duì)角線AC、BD相交于點(diǎn)O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長(zhǎng)為
20
20

查看答案和解析>>

同步練習(xí)冊(cè)答案