如圖1,一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起.現(xiàn)正方形ABCD保持不動,將三角尺GEF繞斜邊EF的中點O(點O也是BD中點)按順時針方向旋轉(zhuǎn).
(1)如圖2,當EF與AB相交于點M,GF與BD相交于點N時,通過觀察或測量BM,F(xiàn)N的長度,猜想BM,F(xiàn)N滿足的數(shù)量關(guān)系,并證明你的猜想;
(2)若三角尺GEF旋轉(zhuǎn)到如圖3所示的位置時,線段FE的延長線與AB的延長線相交于點M,線段BD的延長線與GF的延長線相交于點N,此時,(1)中的猜想還成立嗎?若成立,請證明;若不成立,請說明理由.

【答案】分析:(1)根據(jù)正方形和等腰直角三角形的性質(zhì)可證明△OBM≌△OFN,所以根據(jù)全等的性質(zhì)可知BM=FN;
(2)同(1)中的證明方法一樣,根據(jù)正方形和等腰直角三角形的性質(zhì)得OB=OF,∠MBO=∠NFO=135°,∠MOB=∠NOF,可證△OBM≌△OFN,所以BM=FN.
解答:(1)BM=FN.
證明:∵△GEF是等腰直角三角形,四邊形ABCD是正方形,
∴∠ABD=∠F=45°,OB=OF,
在△OBM與△OFN中,
∴△OBM≌△OFN(ASA),
∴BM=FN;

(2)BM=FN仍然成立.
證明:∵△GEF是等腰直角三角形,四邊形ABCD是正方形,
∴∠DBA=∠GFE=45°,OB=OF,
∴∠MBO=∠NFO=135°,
在△OBM與△OFN中,
∴△OBM≌△OFN(ASA),
∴BM=FN.
點評:本題考查旋轉(zhuǎn)知識在幾何綜合題中運用,旋轉(zhuǎn)前后許多線段相等,本題以實驗為背景,探索在不同位置關(guān)系下線段的關(guān)系,為中考常見的題型.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

梯形ABCD按如圖所示放置在直角坐標系中(如圖a),AB在x軸上,點D在y軸上,CD∥AB,A(-1,0),C(1,3),拋物線y=-
3
5
x2+bx+c
經(jīng)過A、B、D三點,點G是拋物線的頂點,對稱軸GH交x軸為H,動點P從點O沿OB以每秒1個單位的速度向終點B運動,設(shè)運動時間為t秒.
(1)求拋物線的解析式與線段BC的長度
(2)當t為何值時,△PHG與△AOD相似(點P與點A對應)?
(3)如圖(b),連接AC交y軸于點E,動點Q從點B沿BC以每秒1個單位的速度向終點C運動,設(shè)點P、Q同時出發(fā),若其中有一點到達終點,則另一點也立即停止運動.
①請?zhí)剿鳎菏欠翊嬖谀骋粫r刻t,使△OPQ是以O(shè)P為腰的等腰三角形?若存在,求出此時t的值;若不存在,請說明理由.
②如圖(c),連接BD交PQ于F,當t=
19±
61
6
19±
61
6
秒時,BF=
1
2
FD
?(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

梯形ABCD按如圖所示放置在直角坐標系中(如圖a),AB在x軸上,點D在y軸上,CD∥AB,A(-1,0),C(1,3),拋物線數(shù)學公式經(jīng)過A、B、D三點,點G是拋物線的頂點,對稱軸GH交x軸為H,動點P從點O沿OB以每秒1個單位的速度向終點B運動,設(shè)運動時間為t秒.
(1)求拋物線的解析式與線段BC的長度
(2)當t為何值時,△PHG與△AOD相似(點P與點A對應)?
(3)如圖(b),連接AC交y軸于點E,動點Q從點B沿BC以每秒1個單位的速度向終點C運動,設(shè)點P、Q同時出發(fā),若其中有一點到達終點,則另一點也立即停止運動.
①請?zhí)剿鳎菏欠翊嬖谀骋粫r刻t,使△OPQ是以O(shè)P為腰的等腰三角形?若存在,求出此時t的值;若不存在,請說明理由.
②如圖(c),連接BD交PQ于F,當t=______秒時,數(shù)學公式?(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年福建省永春縣九年級上學期期末檢測數(shù)學試卷(解析版) 題型:選擇題

如圖,將一張等腰直角三角形紙片沿虛線剪成甲、乙、丙三塊,其中甲、丙為直角梯形,乙為等腰直角三角形.根據(jù)圖中標示的邊長數(shù)據(jù),比較甲、乙、丙的面積大小,下列判斷正確的是(。

A.甲>乙>丙;?? B.乙>丙>甲;?? C.丙>乙>甲;?? D.丙>甲>乙.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省溫州市瑞安市中考數(shù)學模擬試卷(解析版) 題型:解答題

梯形ABCD按如圖所示放置在直角坐標系中(如圖a),AB在x軸上,點D在y軸上,CD∥AB,A(-1,0),C(1,3),拋物線經(jīng)過A、B、D三點,點G是拋物線的頂點,對稱軸GH交x軸為H,動點P從點O沿OB以每秒1個單位的速度向終點B運動,設(shè)運動時間為t秒.
(1)求拋物線的解析式與線段BC的長度
(2)當t為何值時,△PHG與△AOD相似(點P與點A對應)?
(3)如圖(b),連接AC交y軸于點E,動點Q從點B沿BC以每秒1個單位的速度向終點C運動,設(shè)點P、Q同時出發(fā),若其中有一點到達終點,則另一點也立即停止運動.
①請?zhí)剿鳎菏欠翊嬖谀骋粫r刻t,使△OPQ是以O(shè)P為腰的等腰三角形?若存在,求出此時t的值;若不存在,請說明理由.
②如圖(c),連接BD交PQ于F,當t=______

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇省期末題 題型:解答題

如圖所示,準備了三張大小相同的紙片,其中兩張上各畫一個半徑相等的半圓,另一張紙片上畫一個斜邊長等于半圓直徑的等腰直角三角形,將這三張紙片放在一個盒子里搖勻,隨機地抽取兩張紙片,若可以拼成一個圓形(取出的兩張紙片都畫有半圓形)則甲方贏;若可以拼成一個扇形(取出的一張紙片畫有半圓、一張紙片畫有等腰直角三角形)則乙方贏。你認為這個游戲?qū)﹄p方是公平的嗎?為什么?

查看答案和解析>>

同步練習冊答案