精英家教網 > 初中數學 > 題目詳情
下列命題不成立的是
A.三個角的度數之比為1:3:4的三角形是直角三角形 
B.三個角的度數比為1::2的三角形是直角三角形
C.三邊長度比為1:的三角形是直角三角形
D.三邊長度之比為:2的三角形是直角三角形
B

試題分析:根據三角形的內角和定理及勾股定理的逆定理依次分析各選項即可作出判斷.
A、三個角的度數之比為1:3:4的三角形是直角三角形,C、三邊長度比為1:的三角形是直角三角形,D、三邊長度之比為:2的三角形是直角三角形,均正確,不符合題意;
B、三個角的度數比為1::2的三角形不是直角三角形,本選項符合題意.
點評:解題的關鍵是熟練掌握勾股定理的逆定理:若一個三角形的兩邊長的平方和等于第三邊的平方,則這個三角形的直角三角形.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=CB,∠ABC=900,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結AE、DE、DC.

①求證:△ABE≌△CBD;
②若∠CAE=300,求∠BDC的度數.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在12×12的正方形網格中,△TAB的頂點分別為T(1,1),A(2,3),B(4,2)。

(1)以點T(1,1)為位似中心,按比例尺(TA′:TA)3:1的位似中心的同側將TAB放大為△TA′B′,放大后點A,B的對應點分別為A′,B′,畫出△TA′B′,并寫出點A′,B′的坐標;
(2)在(1)中,若C(a,b)為線段AB上任一點,寫出變化后點C的對應點C′的坐標。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

若x=1是一元二次方程的根,則判別式△=b2-4ac和完全平方式M=的關系是(     )
A.△=MB.△>MC.△<MD.大小關系不能確定

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

[問題情境] 勾股定理是一條古老的數學定理,它有很多證明方法,我國漢代數學家趙爽根據弦圖利用面積法進行證明,著名數學家華羅庚曾提出把“數形關系”帶到其他星球作為地球人與其他星球“人”進行第一次“談話”的語言。
[定理表述] 請你根據圖(1)中的直角三角形敘述勾股定理(用文字及符號語言敘述);
                                        
 
[嘗試證明] 以圖(1)中的直角三角形為基礎可以構造出以a、b為底,以a+b為高的直角梯形如圖(2)。請你利用圖(2)驗證勾股定理;
[知識拓展] 利用圖(2)的直角梯形,我們可以證明,其證明步驟如下:
∵BC=a+b,AD=         .
又∵在直角梯形ABCD中有直角腰BC    斜腰AD(填“>”,“<”或“=”),即       

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知△ABC,請你作出△ABC的高CD,中線BF,角平分線AE(不寫畫法).
 

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

一個三角形最多有a個銳角,b個直角,c個鈍角,則a+b+c=       .

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,已知∠C=90°,∠1=∠2,若BC=10,BD=6,則點D到邊AB的距離為_____.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,x的值可能為(   )
A.10B.9C.7D.6

查看答案和解析>>

同步練習冊答案