20、先化簡,再求值:
(1)(2a2b+2b2a)-[2(a2b-1)+3ab2+2],其中a=2,b=-2
(2)已知:A-2B=7a2-7ab,且B=-4a2+6ab+7,
①求A等于多少?②若|a+1|+(b-2)2=0,求A的值.
(3)已知多項式(2mx2-x2+3x+1)-(5x2-4y2+3x)化簡后不含x2項.求多項式2m3-[3m3-(4m-5)+m]的值
分析:(1)(2)關鍵是化簡,然后把給定的值代入求值.
(3)先化簡,再根據(jù)不含x2項,即x2項的系數(shù)為0,得關于m的方程,求解再代入多項式2m3-[3m3-(4m-5)+m]化簡求值.
解答:解:(1)原式=2a2b+2b2a-[2a2b-2+3ab2+2]
=2a2b+2b2a-2a2b+2-3ab2-2
=-ab2
當a=2,b=-2時,原式=-2×(-2)2=-8.
(2)由題意知,A=(7a2-7ab)+2B
=(7a2-7ab)+2(-4a2+6ab+7)
=7a2-7ab-8a2+12ab+14
=-a2+5ab+14
∵|a+1|+(b-2)2=0,
∴a+1=0,b-2=0,即a=-1,b=2.
當a=-1,b=2時,原式=-1-10+14=3.
(3)(2mx2-x2+3x+1)-(5x2-4y2+3x)
=2mx2-x2+3x+1-5x2+4y2-3x
=(2m-6)x2+4y2+1
∵不含x2
∴2m-6=0,解得m=3.
∴2m3-[3m3-(4m-5)+m]
=2m3-[3m3-4m+5+m]
=2m3-3m3+4m-5-m
=-m3+3m-5
當m=3時
原式=-27+9-5=-23.
點評:整式的混合運算,主要考查了公式法、單項式與多項式相乘以及合并同類項的知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

先化簡,再求值:
2a-6
a-2
÷(
5
a-2
-a-2)
,其中a=-3
1
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、先化簡,再求值:3x2+(2-3x-x2)-(x2+x-1),其中x=-1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算:(1)
2
(2cos45°-sin60°)+
24
4

(2)先化簡,再求值
a2-1
a+3
÷
a+1
2
,其中a=2tan60°-3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)先化簡,再求值:(x-
x
x+1
)
÷(1+
1
x2-1
)
,其中x=
3
-1.
(2)解分式方程:解方程:
1
x-2
+3=
x-1
2-x

(3)解不等式組
x-2
3
+3<x-1  ①
1-3(x+1)≥6-x   ②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先化簡,再求值:-9y+6x2-3(y-
23
x2)
,其中x=2,y=-1.

查看答案和解析>>

同步練習冊答案