【題目】二次函數(shù)在x= 時,有最小值﹣ ,且函數(shù)的圖象經(jīng)過點(0,2),則此函數(shù)的解析式為 .
【答案】y=x2﹣3x+2
【解析】解:∵二次函數(shù)在x= 時,有最小值﹣ , ∴拋物線的頂點是( ,﹣ ),
∴設此函數(shù)的解析式為y=a(x﹣ )2﹣ ,
∵函數(shù)圖象經(jīng)過點(0,2),
∴2=a(0﹣ )2﹣ ,
解得a=1,
∴此函數(shù)的解析式為y=(x﹣ )2﹣ ,即y=x2﹣3x+2.
所以答案是y=x2﹣3x+2.
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的最值的相關知識可以得到問題的答案,需要掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a.
科目:初中數(shù)學 來源: 題型:
【題目】將一根24cm的筷子,置于底面直徑為15cm,高8cm的圓柱形水杯中,如圖所示,設筷子露在杯子外面的長度hcm,則h的取值范圍是( )
A.h≤17cm
B.h≥8cm
C.15cm≤h≤16cm
D.7cm≤h≤16cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸、軸分別交于點,.點的坐標為(,0),點 的坐標為(,0).
(1)求的值;
(2)若點(,)是第二象限內(nèi)的直線上的一個動點.當點運動過程中,試寫出的面積與的函數(shù)關系式,并寫出自變量的取值范圍;
(3)探究:當運動到什么位置時,的面積為,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,正確的是( )
A. 不帶根號的數(shù)不是無理數(shù)
B. 的立方根是±2
C. 絕對值等于的實數(shù)是
D. 每個實數(shù)都對應數(shù)軸上一個點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)居民利用“健步行APP”開展健步走活動,為了解居民的健步走情況,小文同學調(diào)查了部分居民某天行走的步數(shù)單位:千步,并將樣本數(shù)據(jù)整理繪制成如下不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖.
有下面四個推斷:
小文此次一共調(diào)查了200位小區(qū)居民;
行走步數(shù)為千步的人數(shù)超過調(diào)查總?cè)藬?shù)的一半;
行走步數(shù)為千步的人數(shù)為50人;
行走步數(shù)為千步的扇形圓心角是.
根據(jù)統(tǒng)計圖提供的信息,上述推斷合理的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點E,tan∠ABO=0.5,OB=4,OE=2.
(1)求直線AB和反比例函數(shù)的解析式;
(2)求△OCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D,F分別在AB,AC上,CF=CB.連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD.求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某職業(yè)高中機電班共有學生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.
(1)該班男生和女生各有多少人?
(2)某工廠決定到該班招錄30名學生,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學生?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是(0,4)、(﹣1,0),將此平行四邊形繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.
(1)若拋物線經(jīng)過點C、A、A′,求此拋物線的解析式;
(2)點M時第一象限內(nèi)拋物線上的一動點,問:當點M在何處時,△AMA′的面積最大?最大面積是多少?并求出此時M的坐標;
(3)若P為拋物線上一動點,N為x軸上的一動點,點Q坐標為(1,0),當P、N、B、Q構成平行四邊形時,求點P的坐標,當這個平行四邊形為矩形時,求點N的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com