【題目】定義:三角形一邊的中線與這邊上的高線之比稱為這邊上的中高比.
(1)直接寫出等腰直角三角形腰上的中高比為 .
(2)已知一個直角三角形一邊上的中高比為5:4,求它的最小內(nèi)角的正切值.
(3)如圖,已知函數(shù)y= (x+4)(x﹣m)與x軸交于A、B兩點,與y軸的負半軸交于點C,對稱軸與x的正半軸交于點D,若△ABC中AB邊上的中高比為5:4,求m的值.
【答案】
(1)
(2)
解:①當斜邊上的中高比為5:4時,設(shè)高線為4k,則此邊上的中線為5k,如圖2,
在△ABC中,∠BAC=90°,
∴AD是高,
∴AD=4x,AE是中線,
∴CE=AE=5x,
在RtADE中,DE= =3k,
∴CD=CE+DE=8k,
∴tan∠C= = = ,
當直角邊上的中高比為5:4時,設(shè)高為4k,此邊上的中線為5k,
如圖3,
在△ABC中,∠BAC=90°,AB是AC邊上的高,為4k,BD為AC邊上的中線,為5k,
根據(jù)勾股定理得,AD= =3k,
∴AC=2AD=6k,
∴tan∠C= = ,
∴直角三角形的最小內(nèi)角的正切值為 或 ;
(3)
解:∵函數(shù)y= (x+4)(x﹣m)與x軸交于A、B兩點,
∴令y=0,∴0= (x+4)(x﹣m),
∴x=﹣4或x=m,
∴A(﹣4,0),B(m,0),
∵點C是拋物線與y軸的交點,
∴C(0,﹣ ),
∵對稱軸與x的正半軸交于點D,
∴D( ,0),
在Rt△COD中,設(shè)CD=5k,
∴OC=4k,
根據(jù)勾股定理得,OD=3k,
∴ ,∴ ,
即m的值為10.
【解析】解:(1)如圖1,
設(shè)等腰直角三角形的直角邊為2x,
∴BC邊上的高為AB=2x,
∵AD是BC邊上的中線,
∴BD= BC=x,
在Rt△ABD中,根據(jù)勾股定理得,AD= = x,
∴等腰直角三角形腰上的中高比為 = ,
所以答案是: ;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點,BD是對角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,請證明四邊形BEDF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】老師在黑板上出了一道解方程的題,小虎馬上舉手,要求到黑板上去做,他是這樣做的:
5(3x-1)=2(4x+2)-1①,
15x-5=8x+4-1②,
15x-8x=4-1+5③
7x④,
x=⑤
老師說:小虎解一元一次方程的一般步驟都知道,但沒有掌握好,因此解題出現(xiàn)了錯誤,請指出他的錯步及錯誤原因: ,方程的正確的解是x= .
然后,你自己細心的解下面的方程:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2﹣3(m+1)x+2m+3=0
(1)如果該方程有兩個不相等的實數(shù)根,求m的取值范圍;
(2)在(1)的條件下,當該方程的根都是整數(shù),且|x|<4時,求m的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某課題小組為了解某品牌手機的銷售情況,對某專賣店該品牌手機在今年1~4月的銷售做了統(tǒng)計,并繪制成如圖兩幅統(tǒng)計圖(如圖).
(1)該專賣店1~4月共銷售這種品牌的手機臺;
(2)請將條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,“二月”所在的扇形的圓心角的度數(shù)是;
(4)在今年1~4月份中,該專賣店售出該品牌手機的數(shù)量的中位數(shù)是臺.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知OA⊥OB,OA=4,OB=3,以AB為邊作矩形ABCD,使AD=a,過點D作DE垂直O(jiān)A的延長線交于點E.
(1)證明:△OAB∽△EDA;
(2)當a為何值時,△OAB與△EDA全等?請說明理由,并求出此時點C到OE的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,扇形AOB中,OA=10,∠AOB=36°.若將此扇形繞點B順時針旋轉(zhuǎn),得一新扇形A′O′B,其中A點在O′B上,則點O的運動路徑長為cm.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(感知)如圖①,AB∥CD,點E在直線AB與CD之間,連結(jié)AE、BE,試說明∠BEE+∠DCE=∠AEC.下面給出了這道題的解題過程,請完成下面的解題過程,并填空(理由或數(shù)學式):
解:如圖①,過點E作EF∥AB
∴∠BAE=∠1( )
∵AB∥CD( )
∴CD∥EF( )
∴∠2=∠DCE
∴∠BAE+∠DCE=∠1+∠2( )
∴∠BAE+∠DCE=∠AEC
(探究)當點E在如圖②的位置時,其他條件不變,試說明∠AEC+∠FGC+∠DCE=360°;
(應用)點E、F、G在直線AB與CD之間,連結(jié)AE、EF、FG和CG,其他條件不變,如圖③.若∠EFG=36°,則∠BAE+∠AEF+∠FGC+∠DCG= °.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com