【題目】如圖,拋物線與軸交于兩點,與軸交于點連接,已知,且,

1)求拋物線的解析式;

2)若點為直線下方拋物線上一動點,過點軸交點,連接

①若,求此時點的坐標(biāo);

②若點關(guān)于直線的對稱點恰好落在軸上,求此時點的坐標(biāo).

【答案】1y=x2x-3;(2)①點D坐標(biāo)為(1,)或(3-3);②點D坐標(biāo)為(,).

【解析】

1)設(shè)拋物線解析式為y=ax2+bx+ca≠0),由C點坐標(biāo)可得OC的長,根據(jù)可求出BC的長,利用勾股定理可求出OB的長,即可得出點B坐標(biāo),把A、BC三點坐標(biāo)代入y=ax2+bx+c,解方程組求出a、bc的值即可得拋物線解析式;

2)①由BC坐標(biāo)可求出直線BC的解析式,設(shè)Dm,m2m-3),把m代入直線BC解析式可得點E縱坐標(biāo),根據(jù)列方程求出m的值即可得答案;

②根據(jù)軸對稱的性質(zhì)可得∠E′CD=ECD,根據(jù)平行線的性質(zhì)可得∠E′CD=CDE,即可得出∠ECD=CDE,可得DE=CE,設(shè)Dnn2n-3),則En,n-3),根據(jù)兩點間距離公式列方程求出n值即可得答案.

1)設(shè)拋物線解析式為y=ax2+bx+ca≠0),

C0-3),

OC=3,

,

BC==5

OB==4,

B4,0

A-10),

解得:,

∴拋物線的解析式為y=x2x-3

2)設(shè)Dm,m2m-3),

設(shè)直線BC的解析式為y=kx+b

,

解得:,

∴直線BC的解析式為y=x-3,

DE //y軸,

∴點E坐標(biāo)為(m,m-3),

,

m-3-m2m-3=

解得:m1=1,m2=3,

當(dāng)m=1時,m2m-3=,

當(dāng)m=3時,m2m-3=-3,

∴點D坐標(biāo)為(1)或(3,-3).

3)如圖,點關(guān)于直線的對稱點恰好落在軸上,

∴∠E′CD=ECD

DE//y軸,

∴∠E′CD=CDE

∴∠ECD=CDE,

CE=DE

設(shè)Dn,n2n-3),則En,n-3),

C0,-3),

n-3-n2n-3==n,

解得:n1=,n2=0(舍去),

當(dāng)n=時,n2n-3=,

∴點D坐標(biāo)為(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點和點

1)該拋物線的對稱軸為直線________;

2)已知該拋物線的開口向下,當(dāng)時,的最大值是4,求此范圍內(nèi)的最小值.

3)在(2)的條件下,直線過點,且與該拋物線的另一個交點為點,點為拋物線對稱軸上的動點,當(dāng)為等腰三角形時直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】宣和中學(xué)圖書館今日購進(jìn)甲、乙兩種圖書,每本甲種圖書的進(jìn)價比每本乙種圖書的進(jìn)價高20元,花780元購進(jìn)甲種圖書的數(shù)量與花540元購進(jìn)乙種圖書的數(shù)量相同.

1)求甲、乙兩種圖書每本的進(jìn)價分別是多少元;

2)宣和中學(xué)購進(jìn)甲、乙兩種圖書共70本,總購書費用不超過3950元,則最多購進(jìn)甲種圖書多少本.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在中,,,點上一動點,以為邊,在的右側(cè)作等邊

1)當(dāng)平分時,如圖1,四邊形________形;

2)過,如圖2,求證:的中點;

3)若

①當(dāng)的中點時,過點,如圖3,求的長;

②點點運動到點,則點所經(jīng)過路徑長為________(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,∠C=90°,O是斜邊AB上一點,以O為圓心,OB為半徑的圓與AB交于點E,與BC交于點F,與AC相切于點D,連接DFBD,且BD平分∠ODF

1)求證:四邊形是菱形;

2)若,求陰影部分的面積(結(jié)果保留)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD在平面直角坐標(biāo)系中的位置如圖所示,對角線AC與BD的交點E恰好在y軸上,過點D和BC的中點H的直線交AC于點F,線段DE,CD的長是方程x2﹣9x+18=0的兩根,請解答下列問題:

(1)求點D的坐標(biāo);

(2)若反比例函數(shù)y=(k≠0)的圖象經(jīng)過點H,則k=   ;

(3)點Q在直線BD上,在直線DH上是否存在點P,使以點F,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在RtABC中,∠ACB=90°,AC=BCD是線段AB上一點,連結(jié)CD,將線段CD繞點C逆時針旋轉(zhuǎn)90°得到線段CE,連結(jié)DEBE

1)依題意補全圖形;

2)若∠ACD,用含α的代數(shù)式表示∠DEB;

3)若△ACD的外心在三角形的內(nèi)部,請直接寫出α的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的頂點A,B分別在y軸、x軸上,OA2OB1,斜邊ACx軸.若反比例函數(shù)yk0x0)的圖象經(jīng)過AC的中點D,則k的值為(

A.4B.5C.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)與函數(shù)定義新函數(shù)

1)若則新函數(shù) ;

2)若新函數(shù)的解析式為 ,

3)設(shè)新函數(shù)頂點為

①當(dāng)為何值時,有最大值,并求出最大值;

②求的函數(shù)解析式;

4)請你探究:函數(shù)與新函數(shù)分別經(jīng)過定點,函數(shù)的頂點為,新函數(shù)上存在一點,使得以點為頂點的四邊形為平行四邊形時,直接寫出的值.

查看答案和解析>>

同步練習(xí)冊答案