【題目】如圖1,△ABC中,AD是∠BAC的平分線,若AB=AC+CD,那么∠ACB與∠ABC有怎樣的數(shù)量關(guān)系?小明通過觀察分析,形成了如下解題思路:
如圖2,延長AC到E,使CE=CD,連接DE.由AB=AC+CD,可得AE=AB.又因為AD是∠BAC的平分線,可得△ABD≌△AED,進(jìn)一步分析就可以得到∠ACB與∠ABC的數(shù)量關(guān)系.
(1)判定△ABD與△AED全等的依據(jù)是;
(2)∠ACB與∠ABC的數(shù)量關(guān)系為: .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點A(2,0)的兩條直線l1 , l2分別交y軸于點B,C,其中點B在原點上方,點C在原點下方,已知AB= .
(1)求點B的坐標(biāo);
(2)若△ABC的面積為4,求直線l2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】火車在筆直的鐵路上開動,火車頭以100千米/時的速度前進(jìn)了半小時,則車尾走的路程是( )
A. 100千米 B. 50千米 C. 200千米 D. 無法計算
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市質(zhì)檢部門對該市某超市沐浴露的質(zhì)量進(jìn)行抽樣調(diào)查,其中A品牌的沐浴露有400瓶、B品牌的沐浴露有360瓶、C品牌的沐浴露有500瓶,考慮到不同品牌的質(zhì)量差異,為保證樣本有較好的代表性,該質(zhì)檢部門按5%的比例抽樣,A品牌應(yīng)調(diào)查________瓶,B品牌應(yīng)調(diào)查________瓶,C品牌應(yīng)調(diào)查________瓶.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教材中有如下一段文字: 思考
如圖,把一長一短的兩根木棍的一端固定在一起,擺出△ABC,固定住長木棍,轉(zhuǎn)動短木棍,得到△ABD,這個實驗說明了什么?
如圖中的△ABC與△ABD滿足兩邊和其中一邊的對角分別相等,即AB=AB,AC=AD,∠B=∠B,但△ABC與△ABD不全等.這說明,有兩邊和其中一邊的對角分別相等的兩個三角形不一定全等.
小明通過對上述問題的再思考,提出:兩邊分別相等且這兩邊中較大邊所對的角相等的兩個三角形全等.請你判斷小明的說法 . (填“正確”或“不正確”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求證:AD平分∠BAC.
下面是部分推理過程,請你將其補(bǔ)充完整:
∵AD⊥BC于D,EG⊥BC于G (已知)
∴∠ADC=∠EGC=90°
∴AD∥EG .
∴∠1=∠2 .
=∠3(兩直線平行,同位角相等)
又∵∠E=∠1(已知)
∴∠2=∠3 .
∴AD平分∠BAC .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鈍角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC=β,過點A的直線l交BC邊于點D.點E在直線l上,且BC=BE.
(1)若AB=AC,點E在AD延長線上. 當(dāng)α=30°,點D恰好為BE中點時,補(bǔ)全圖1,直接寫出∠BAE=°,
∠BEA=°;
(2)如圖2,若∠BAE=2α,求∠BEA的度數(shù)(用含α的代數(shù)式表示);
(3)如圖3,若AB<AC,∠BEA的度數(shù)與(1)中②的結(jié)論相同,直接寫出∠BAE,α,β滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于方程x2+2x﹣4=0的根的情況,下列結(jié)論錯誤的是( 。
A. 有兩個不相等的實數(shù)根B. 兩實數(shù)根的和為﹣2
C. 沒有實數(shù)根D. 兩實數(shù)根的積為﹣4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com