如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC與E,交BC與D.

(1)求證:D是BC的中點(diǎn);
(2)求證:△BEC∽△ADC;
(3)若CE=5,BD=6.5,求AB的長.
(1)證明見解析; (2)證明見解析; (3)10.

試題分析:(1)根據(jù)圓周角定理的推論得到∠BDA=90°,再根據(jù)等腰三角形的性質(zhì)即可得到BD=CD;
(2)根據(jù)有兩對角相等的兩個三角形相似證明即可;
(3)由(2)中的三角形相似可得到關(guān)于AC的比例式,AC可求,進(jìn)而求出AB的長.
試題解析:(1)∵AB為⊙O的直徑,∴∠BDA=90°.∴AD⊥BC.
∵AB=AC.∴BD=CD.∴D是BC的中點(diǎn).
(2)∵AB=AC,∴∠C=∠ABD.
∵AB為⊙O的直徑,∴∠ADB=∠BEC=90°.
∴△BEC∽△ADC.
(3)∵△BEC∽△ADC,∴CE:BD=BC:AC.
∵CE=5,BD=6.5,∴BC=2BD=13.
∴5:6.5=13:AC,∴AC=10.
∴AB=AC=10.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

工程上常用鋼珠來測量零件上小圓孔的寬口,假設(shè)鋼珠的直徑是10mm,測得鋼珠頂端離零件表面的距離為8mm,如圖所示,則這個小圓孔的寬口AB的長度為            mm。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB=BC,以AB為直徑的⊙O交AC于點(diǎn)D,過D作DE⊥BC,垂足為E。求證:

(1)DE是⊙O的切線;
(2)作DG⊥AB交⊙O于G,垂足為F,若∠A=30°,AB=8,求弦DG的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的弦,C是AB的中點(diǎn),若OC=AB=,則半徑OB的長為        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知△ABC的三邊長分別是6,8,10,則△ABC外接圓的直徑是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若兩圓的半徑分別是2和3,圓心距是5,則這兩圓的位置關(guān)系是 _________ 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,若AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠C的度數(shù)為(      )
A.116°B.58°C.42°D.32°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

三角形的外心具有的性質(zhì)是(   )
A.到三邊的距離相等B.到三個頂點(diǎn)的距離相等
C.外心在三角形外D.外心在三角形內(nèi)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,⊙P的圓心坐標(biāo)為P(0,6),若⊙P的半徑為4,則直線y=x與⊙P的位置關(guān)系是                 .

查看答案和解析>>

同步練習(xí)冊答案