作業(yè)寶如圖,經(jīng)過原點的拋物線y1=x2+2x與x軸交于點A,將它平移得到拋物線y2=(x-2)2+1.有以下結(jié)論:
①y2是由y1先向上平移1個單位,再向右平移2個單位得到的;
②無論x取何值,y2≥1;
③當(dāng)x=0時,y2-y1=5;
④當(dāng)y1<0時,-2<x<0.
其中正確的結(jié)論是


  1. A.
    ①②③
  2. B.
    ②③④
  3. C.
    ①③④
  4. D.
    ①②④
B
分析:利用二次函數(shù)圖象以及平移的性質(zhì)分別求出即可.
解答:∵y1=x2+2x=(x+1)2-1,y2=(x-2)2+1,
∴①y2是由y1先向上平移2個單位,再向右平移3個單位得到的,故此選項錯誤;
∵y2=(x-2)2+1,
∴②無論x取何值,y2≥1,故此選項正確;
③當(dāng)x=0時,y2-y1=(0-2)2+1-[(0+1)2-1]=5;故此選項正確;
④∵y1=x2+2x=x(x+2),
∴圖象與x軸的交點坐標(biāo)為:(0,0),(-2,0),
當(dāng)y1<0時,-2<x<0,故此選項正確.
故選:B.
點評:此題主要考查了二次函數(shù)的平移變換以及二次函數(shù)的增減性等知識,利用數(shù)形結(jié)合得出是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

小明將她家鄉(xiāng)的拋物線型彩虹橋按比例縮小后,繪制成如下圖所示的示意圖,圖中的三條拋物線分別表示橋上的三條鋼梁,x軸表示橋面,y軸經(jīng)過中間拋物線的最高點,左右兩條拋物線關(guān)于y軸對稱,經(jīng)過測算,右邊拋物線的表達式為y=-
120
(x-30)2+5

精英家教網(wǎng)
(1)直接寫出左邊拋物線的解析式;
(2)求拋物線彩虹橋的總跨度AB的長;
(3)若三條鋼梁的頂點M、E、N與原點O連成的四邊形OMEN是菱形,你能求出鋼梁最高點離橋面的高度OE的長嗎?如果能,請寫出過程;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州)如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若拋物線經(jīng)過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的“內(nèi)接格點三角形”.以O(shè)為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個交點之間的距離為3
2
,且這兩個交點與拋物線的頂點是拋物線的內(nèi)接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省江陰市顧山九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

.如圖,10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若拋物線經(jīng)過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的內(nèi)接格點三角形.以O為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個交點之間的距離為,且這兩個交點與拋物線的頂點是拋物線的內(nèi)接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是

A13?????? B14? ???? C15?????? D16

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若拋物線經(jīng)過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的“內(nèi)接格點三角形”.以O(shè)為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個交點之間的距離為,且這兩個交點與拋物線的頂點是拋物線的內(nèi)接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是( )
A.16
B.15
C.14
D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(江蘇南通卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,經(jīng)過點A(0,-4)的拋物線y=x2+bx+c與x軸相交于點B(-0,0)和C,O為坐標(biāo)原點.

(1)求拋物線的解析式;

(2)將拋物線y=x2+bx+c向上平移個單位長度、再向左平移m(m>0)個單位長度,得到新拋物

線.若新拋物線的頂點P在△ABC內(nèi),求m的取值范圍;

(3)設(shè)點M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長.

 

查看答案和解析>>

同步練習(xí)冊答案