【題目】如圖①有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心.(下列各題結果精確到0.1m)
(1)求地基的中心到邊緣的距離;
(2)己知塔的墻體寬為1m,現要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
【答案】
(1)
解:作OM⊥AB于點M,連接OA、OB,則OM為邊心距,∠AOB是中心角.
由正五邊形性質得∠AOB=360°÷5=72°.
又AB= ×26=5.2,
∴AM=2.6,∠AOM=36°,
在Rt△AMO中,邊心距OM=
(2)
3.6-1-1.6=1(m).
答:地基的中心到邊緣的距離約為3.6m,塑像底座的半徑最大約為1m.
【解析】(1)構造一個由正多邊形的邊心距、半邊和半徑組成的直角三角形.根據正五邊形的性質得到半邊所對的角是36°,再根據題意中的周長求得該正五邊形的半邊是26÷10=2.6,最后由該角的正切值進行求解;(2)根據(1)中的結論、塔的墻體寬為1m和最窄處為1.6m的觀光通道,進行計算.
【考點精析】解答此題的關鍵在于理解正多邊形和圓的相關知識,掌握圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角;圓的外切四邊形的兩組對邊的和相等.
科目:初中數學 來源: 題型:
【題目】如圖,某日的錢塘江觀潮信息如表:
按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離 (千米)與時間 (分鐘)的函數關系用圖3表示,其中:“11:40時甲地‘交叉潮’的潮頭離乙地12千米”記為點 ,點 坐標為 ,曲線 可用二次函數 ( , 是常數)刻畫.
(1)求 的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時,小紅騎單車從乙地出發(fā),沿江邊公路以 千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調轉車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為 千米/分,小紅逐漸落后,問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度 , 是加速前的速度).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知O為直線AB上一點,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,則∠BOE的度數為( 。
A. α B. 180°﹣2α C. 360°﹣4α D. 2α﹣60°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方體的長為15寬為10,高為20,點B離點C的距離為5,一只螞蟻如果要沿著長方體的表面從點A爬到點B,需要爬行的最短距離是( )
A. 20 B. 25 C. 30 D. 32
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將6張小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內,未被覆蓋的部分恰好分割為兩個長方形,面積分別為S1和S2.已知小長方形紙片的長為a,寬為b,且a>b.當AB長度不變而BC變長時,將6張小長方形紙片還按照同樣的方式放在新的長方形ABCD內,S1與S2的差總保持不變,則a,b滿足的關系是
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數(k>0)與一次函數的圖象相交于兩點A(,),B(,),線段AB交y軸與C,當|- |=2且AC = 2BC時,k、b的值分別為( )
A. k=,b=2 B. k=,b=1 C. k=,b= D. k=,b=
【答案】D
【解析】∵AC=2BC,∴A點的橫坐標的絕對值是B點橫坐標絕對值的兩倍.∵點A、點B都在一次函數y=x+b的圖象上,∴設B(m, m+b),則A(-2m,-m+b),∵|-|=2,∴m-(-2m)=2,解得m=,又∵點A、點B都在反比例函數的圖象上,∴(+b)=(-)×(-+b),解得b=,∴k=×(+)=,故選D.
【題型】單選題
【結束】
11
【題目】若點(4,m)在反比例函數(x≠0)的圖象上,則m的值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形ABCD的周長為20 cm,兩條對角線AC,BD相交于點O,過點O作AC的垂線EF,分別交兩邊AD,BC于點E,F(不與頂點重合),則以下關于△CDE與△ABF判斷完全正確的一項為( )
A. △CDE與△ABF的周長都等于10 cm,但面積不一定相等
B. △CDE與△ABF全等,且周長都為10 cm
C. △CDE與△ABF全等,且周長都為5 cm
D. △CDE與△ABF全等,但它們的周長和面積都不能確定
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com