【題目】下列語句不是命題的是( )
A. 畫兩條相交直線 B. 互補的兩個角之和是180°
C. 兩點之間線段最短 D. 相等的兩個角是對頂角
科目:初中數(shù)學 來源: 題型:
【題目】閱讀發(fā)現(xiàn):如圖①,在△ABC中,∠ACB=2∠B,∠ACB=90°,AD為∠BAC的平分線,且交BC于D,我們發(fā)現(xiàn)在AB上截取AE=AC,連結(jié)DE,可得AB=AC+CD(不需證明).
(1)探究:如圖②,當∠ACB≠90°時,其他條件不變,線段AB、AC、CD又有怎樣的數(shù)量關(guān)系,寫出結(jié)果,并證明;
(2)拓展:如圖③,當∠ACB=2∠B,∠ACB≠90°時,AD為△ABC的外角∠CAF的平分線,且交BC的延長線于點D,則線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①是我們常見的地磚上的圖案,其中包含了一種特殊的平面圖形﹣正八邊形.
(1)如圖②,AE是⊙O的直徑,用直尺和圓規(guī)作⊙O的內(nèi)接正八邊形ABCDEFGH(不寫作法,保留作圖痕跡);
(2)在(1)的前提下,連接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一個圓錐的側(cè)面,則這個圓錐底面圓的半徑等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm.射線AG∥BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2cm/s的速度運動,設(shè)運動時間為t(s).
(1)連接EF,當EF經(jīng)過AC邊的中點D時,求證:△ADE≌△CDF;
(2)填空: ①當t為s時,四邊形ACFE是菱形;
②當t為s時,以A、F、C、E為頂點的四邊形是直角梯形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】動點A從原點出發(fā)向數(shù)軸負方向運動,同時,動點B也從原點出發(fā)向數(shù)軸正方向運動,3秒后,兩點相距15個單位長度.已知動點A、B的速度比是1:4.(速度單位:單位長度/秒)
(1)求出兩個動點運動的速度;
(2)若A、B兩點從(1)中的位置同時向數(shù)軸負方向運動,幾秒后原點恰好處在兩個動點正中間;
(3)在(2)中A、B兩點繼續(xù)同時向數(shù)軸負方向運動時,另一動點C同時從B點位置出發(fā)向A運動,當遇到A后,立即返回向B點運動,遇到B點后立即返回向A點運動,如此往返,直到B追上A時,C立即停止運動.若點C一直以20單位長度/秒的速度勻速運動,那么點C從開始到停止運動,運動的路程是多少單位長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC中, BD平分∠ABC , 且與△ABC的外角∠ACE的角平分線交于點D .
(1)若 , ,求∠D的度數(shù);
(2)若把∠A截去,得到四邊形MNCB , 如圖②,猜想∠D、∠M、∠N的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩同學的家與學校的距離均為3000米.甲同學先步行600米,然后乘公交車去學校、乙同學騎自行車去學校.已知甲步行速度是乙騎自行車速度的 ,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學同時從家發(fā)去學校,結(jié)果甲同學比乙同學早到2分鐘.
(1)求乙騎自行車的速度;
(2)當甲到達學校時,乙同學離學校還有多遠?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列判斷中,不正確的有( )
A.三邊對應成比例的兩個三角形相似
B.兩邊對應成比例,且有一個角相等的兩個三角形相似
C.斜邊與一條直角邊對應成比例的兩個直角三角形相似
D.有一個角是100°的兩個等腰三角形相似
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com