13.若2x2y2b+3與$\frac{1}{2}$xa+1y${\;}^{\frac{2}{3}b-1}$是同類項,求a,b的值.

分析 根據(jù)同類項的概念即可列出方程求出a與b的值.

解答 解:由題意可知:a+1=2,2b+3=$\frac{2}{3}$b-1
∴a=1,
∵2b+3=$\frac{2}{3}$b-1
∴6b+9=2b-3
∴b=-3
即a=1,b=-3

點評 本題考查同類項的概念,涉及一元一次方程的解法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.已知在平面直角坐標(biāo)系中,點A(1,2),點B(4,1),點C(-3,-2).
(1)在x軸上找一點D,使AD+BD最小,求點D坐標(biāo);
(2)在y軸上找一點E,使|AE-CE|最大,求點E坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.(1)解方程:$\frac{2x-1}{6}$-$\frac{3x-1}{8}$=1+$\frac{x+1}{3}$
(2)先化簡,再求值:-3x2b+(3ab2-a2b)-2(2ab2-a2b),其中(a+1)2+|b-2|=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在⊙O中,直徑AB=4,點C在⊙O上,且∠AOC=60°,連接BC,點P在BC上(點P不與點B,C重合),連接OP并延長交⊙O于點M,過P作PQ⊥OM交$\widehat{AM}$于點Q.
(1)求BC的長;
(2)當(dāng)PQ∥AB時,求PQ的長;
(3)點P在BC上移動,當(dāng)PQ的長取最大值時,試判斷四邊形OBMC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,二次函數(shù)y=ax2+bx-3的圖象與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C.
(1)求該拋物線的解析式;
(2)D是線段BC上的一個動點,過D點作y軸的平行線交拋物線于點N,求線段DN長度的最大值;
(3)該拋物線的頂點為M,探究坐標(biāo)軸上是否存在點P,使得以點P,A,C為頂點的三角形與△BCM相似?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖1,點M放在正方形ABCD的對角線AC(不與點A重合)上滑動,連結(jié)DM,做MN⊥DM交直線AB于N.

(1)求證:DM=MN;
(2)若將(1)中的正方形變?yōu)榫匦危溆鄺l件不變(如圖2),且DC=2AD,求MD:MN;
(3)在(2)中,若CD=nAD,當(dāng)M滑動到CA的延長線上時(如圖3),請你直接寫出MD:MN的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知直線AB和CD相交于點O,射線OE⊥AB于點O,射線OF⊥CD于點O,且∠BOF=50°,求∠AOC和∠EOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知∠AOC=75°,∠BOC=50°,OD平分∠BOC,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.下列問題哪些是必然事件?哪些是不可能事件?哪些是隨機事件?
(1)太陽從西邊落山;
(2)a2+b2=-1(其中a、b都是實數(shù));
(3)水往低處流;
(4)三個人性別各不相同;
(5)一元二次方程x2+2x+3=0無實數(shù)解;
(6)經(jīng)過有信號燈的十字路口,遇見紅燈.

查看答案和解析>>

同步練習(xí)冊答案