20.一個圓錐的三視圖如圖所示,求圓錐的全面積.

分析 首先求得底面周長,即側(cè)面展開圖的扇形弧長,然后根據(jù)扇形的面積公式即可求得側(cè)面積,即圓錐的側(cè)面積,再求得圓錐的底面積,側(cè)面積與底面積的和就是全面積.

解答 解:根據(jù)幾何體的三視圖得到該幾何體為圓錐:底面半徑為10,母線長為30,
底面周長是:2×10π=20π,
則側(cè)面積是:$\frac{1}{2}$×20π×30=300π,
底面積是:π×102=100π,
則全面積是:300π+100π=400π.

點評 本題考查了圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.在爭創(chuàng)全國衛(wèi)生城市的活動中,我區(qū)“義工隊”義務(wù)清運一堆重達(dá)100噸的垃圾,清運了25噸后因附近居民主動參與到義務(wù)勞動中,使清運的速度比原來提高了一倍,前后共用5小時就完成清運,請你求出義工隊原計劃每小時清運多少噸垃圾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,把紙片△A′BC沿DE折疊,點A′落在四邊形BCDE內(nèi)部點A處.
(1)寫出圖中一對全等的三角形,并寫出它們的所有對應(yīng)角.
(2)設(shè)∠AED的度數(shù)為x,∠ADE的度數(shù)為y,那么∠1,∠2的度數(shù)分別是多少?(用含有x或y的式子表式)
(3)∠A與∠1+∠2之間有一種數(shù)量關(guān)系始終保持不變,請找出這個規(guī)律,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的中點,過點A作AD⊥AB交BE的延長線于點D,CG平分∠ACB交BD于點G,F(xiàn)為AB邊上一點,連接CF,且∠ACF=∠CBG.
(1)求證:AD∥CG;
(2)求證:△ACF≌△CBG;
(3)若CF=12,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.已知∠MAN=120°,點C是∠MAN的平分線AQ上的一個定點,點B,D分別在AN,AM上,連接BD.
【發(fā)現(xiàn)】
(1)如圖1,若∠ABC=∠ADC=90°,則∠BCD=60°,△CBD是等邊三角形;
【探索】
(2)如圖2,若∠ABC+∠ADC=180°,請判斷△CBD的形狀,并證明你的結(jié)論;
【應(yīng)用】
(3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點G,H分別在射線OE,OF上,且△PGH為等邊三角形,則滿足上述條件的△PGH的個數(shù)一共有④.(只填序號)
①2個 ②3個 ③4個 ④4個以上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,平面直角坐標(biāo)系中,四邊形OABC是長方形,O為原點,點A在x軸上,點C在y軸上且A(10,0),C(0,6),點D在AB邊上,將△CBD沿CD翻折,點B恰好落在OA邊上點E處.
(1)求點E的坐標(biāo);
(2)求折痕CD所在直線的函數(shù)表達(dá)式;
(3)請你延長直線CD交x軸于點F.
①求△COF的面積;
②在x軸上是否存在點P,使S△OCP=$\frac{1}{3}$S△COF?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.已知:如圖,△ABC的中線BD、CE交于點O.
(1)求證:$\frac{OD}{OB}$=$\frac{1}{2}$;
(2)求證:△ABC的三條中線交于一點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.計算:(1)-100÷10×(-$\frac{1}{10}$)2;(2)2.5÷[($\frac{1}{5}$-1)×(2+$\frac{1}{2}$)].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.已知a=3+$\sqrt{10}$,b=3-$\sqrt{10}$,求$\frac{a}$+$\frac{a}$的值.

查看答案和解析>>

同步練習(xí)冊答案