如圖,在△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,已知EH=EB=3,AE=4,則CH的長(zhǎng)是( 。
分析:由AD垂直于BC,CE垂直于AB,利用垂直的定義得到一對(duì)角為直角,再由一對(duì)對(duì)頂角相等,利用三角形的內(nèi)角和定理得到一對(duì)角相等,再由一對(duì)直角相等,以及一對(duì)邊相等,利用AAS得到三角形AEH與三角形EBC全等,由全等三角形的對(duì)應(yīng)邊相等得到AE=EC,由EC-EH,即AE-EH即可求出HC的長(zhǎng).
解答:解:∵AD⊥BC,CE⊥AB,
∴∠ADB=∠AEH=90°,
∵∠AHE=∠CHD,
∴∠BAD=∠BCE,
∵在△HEA和△BEC中,
∠BAD=∠BCE
∠AEH=∠BEC=90°
EH=EB
,
∴△HEA≌△BEC(AAS),
∴AE=EC=4,
則CH=EC-EH=AE-EH=4-3=1.
故選C
點(diǎn)評(píng):此題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案