如圖,拋物線C1:y=(x+m)2(m為常數(shù),m>0),平移拋物線y=﹣x2,使其頂點(diǎn)D在拋物線C1位于y軸右側(cè)的圖象上,得到拋物線C2.拋物線C2交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,設(shè)點(diǎn)D的橫坐標(biāo)為a.

(1)如圖1,若m=
①當(dāng)OC=2時(shí),求拋物線C2的解析式;
②是否存在a,使得線段BC上有一點(diǎn)P,滿足點(diǎn)B與點(diǎn)C到直線OP的距離之和最大且AP=BP?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由;
(2)如圖2,當(dāng)OB=2﹣m(0<m<)時(shí),請(qǐng)直接寫出到△ABD的三邊所在直線的距離相等的所有點(diǎn)的坐標(biāo)(用含m的式子表示).

(1) ①y=﹣x2+x+2.②.(2)P1﹣m,1),P2﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).

解析試題分析:(1)①首先寫出平移后拋物線C2的解析式(含有未知數(shù)a),然后利用點(diǎn)C(0,2)在C2上,求出拋物線C2的解析式;
②認(rèn)真審題,題中條件“AP=BP”意味著點(diǎn)P在對(duì)稱軸上,“點(diǎn)B與點(diǎn)C到直線OP的距離之和最大”意味著OP⊥BC.畫出圖形,如圖1所示,利用三角函數(shù)(或相似),求出a的值;
(2)解題要點(diǎn)有3個(gè):
i)判定△ABD為等邊三角形;
ii)理論依據(jù)是角平分線的性質(zhì),即角平分線上的點(diǎn)到角兩邊的距離相等;
iii)滿足條件的點(diǎn)有4個(gè),即△ABD形內(nèi)1個(gè)(內(nèi)心),形外3個(gè).不要漏解.
試題解析:(1)當(dāng)m=時(shí),拋物線C1:y=(x+2
∵拋物線C2的頂點(diǎn)D在拋物線C1上,且橫坐標(biāo)為a,
∴D(a,(a+2).
∴拋物線C2:y=﹣(x﹣a)2+(a+2(I).
①∵OC=2,∴C(0,2).
∵點(diǎn)C在拋物線C2上,
∴﹣(0﹣a)2+(a+2=2,
解得:a=,代入(I)式,
得拋物線C2的解析式為:y=﹣x2+x+2.
②在(I)式中,
令y=0,即:﹣(x﹣a)2+(a+2=0,解得x=2a+或x=﹣,∴B(2a+,0);
令x=0,得:y=a+,∴C(0,a+).
設(shè)直線BC的解析式為y=kx+b,則有:
,解得,
∴直線BC的解析式為:y=﹣x+(a+).
假設(shè)存在滿足條件的a值.
∵AP=BP,
∴點(diǎn)P在AB的垂直平分線上,即點(diǎn)P在C2的對(duì)稱軸上;
∵點(diǎn)B與點(diǎn)C到直線OP的距離之和≤BC,只有OP⊥BC時(shí)等號(hào)成立,
∴OP⊥BC.
如圖1所示,設(shè)C2對(duì)稱軸x=a(a>0)與BC交于點(diǎn)P,與x軸交于點(diǎn)E,
則OP⊥BC,OE=a.

∵點(diǎn)P在直線BC上,
∴P(a,a+),PE=a+
∵tan∠EOP=tan∠BCO=,
,
解得:a=
∴存在a=,使得線段BC上有一點(diǎn)P,滿足點(diǎn)B與點(diǎn)C到直線OP的距離之和最大且AP="BP"
(3)∵拋物線C2的頂點(diǎn)D在拋物線C1上,且橫坐標(biāo)為a,
∴D(a,(a+m)2).
∴拋物線C2:y=﹣(x﹣a)2+(a+m)2
令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).
∵OB=2﹣m,
∴2a+m=2﹣m,
∴a=﹣m.
∴D(﹣m,3).
AB=OB+OA=2﹣m+m=2
如圖2所示,設(shè)對(duì)稱軸與x軸交于點(diǎn)E,則DE=3,BE=AB=,OE=OB﹣BE=﹣m.

∵tan∠ABD=,
∴∠ABD=60°.
又∵AD=BD,∴△ABD為等邊三角形.
作∠ABD的平分線,交DE于點(diǎn)P1,則P1E=BE•tan30°=×=1,
∴P1﹣m,1);
在△ABD形外,依次作各個(gè)外角的平分線,它們相交于點(diǎn)P2、P3、P4
在Rt△BEP2中,P2E=BE•tan60°==3,
∴P2﹣m,﹣3);
易知△ADP3、△BDP4均為等邊三角形,∴DP3=DP4=AB=2,且P3P4∥x軸.
∴P3(﹣﹣m,3)、P4(3﹣m,3).
綜上所述,到△ABD的三邊所在直線的距離相等的所有點(diǎn)有4個(gè),
其坐標(biāo)為:P1﹣m,1),P2﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).
【考點(diǎn)】二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線y=x2﹣4x+3.
(1)求該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸方程;
(2)求該拋物線與x軸的交點(diǎn)坐標(biāo);
(3)當(dāng)x為何值時(shí),y≤0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知二次函數(shù)的圖象過(guò)點(diǎn)O(0,0),A(4,0),B(2,﹣),M是OA的中點(diǎn).
(1)求此二次函數(shù)的解析式;
(2)設(shè)P是拋物線上的一點(diǎn),過(guò)P作x軸的平行線與拋物線交于另一點(diǎn)Q,要使四邊形PQAM是菱形,求P點(diǎn)的坐標(biāo);
(3)將拋物線在x軸下方的部分沿x軸向上翻折,得曲線OB′A(B′為B關(guān)于x軸的對(duì)稱點(diǎn)),在原拋物線x軸的上方部分取一點(diǎn)C,連接CM,CM與翻折后的曲線OB′A交于點(diǎn)D.若△CDA的面積是△MDA面積的2倍,這樣的點(diǎn)C是否存在?若存在求出C點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商家計(jì)劃從廠家采購(gòu)空調(diào)和冰箱兩種產(chǎn)品共20臺(tái),空調(diào)的采購(gòu)單價(jià)y1(元/臺(tái))與采購(gòu)數(shù)量x1(臺(tái))滿足y1=﹣20x1+1500(0<x1≤20,x1為整數(shù));冰箱的采購(gòu)單價(jià)y2(元/臺(tái))與采購(gòu)數(shù)量x2(臺(tái))滿足y2=﹣10x2+1300(0<x2≤20,x2為整數(shù)).
(1)經(jīng)商家與廠家協(xié)商,采購(gòu)空調(diào)的數(shù)量不少于冰箱數(shù)量的,且空調(diào)采購(gòu)單價(jià)不低于1200元,問(wèn)該商家共有幾種進(jìn)貨方案?
(2)該商家分別以1760元/臺(tái)和1700元/臺(tái)的銷售單價(jià)售出空調(diào)和冰箱,且全部售完.在(1)的條件下,問(wèn)采購(gòu)空調(diào)多少臺(tái)時(shí)總利潤(rùn)最大?并求最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知點(diǎn)P(0,4),點(diǎn)A在線段OP上,點(diǎn)B在x軸正半軸上,且AP=OB=t, 0<t<4,以AB為邊在第一象限內(nèi)作正方形ABCD;過(guò)點(diǎn)C、D依次向x軸、y軸作垂線,垂足為M,N,設(shè)過(guò)O,C兩點(diǎn)的拋物線為y=ax2+bx+c.
(1)填空:△AOB≌△       ≌△BMC(不需證明);用含t的代數(shù)式表示A點(diǎn)縱坐標(biāo):A(0,       ;
(2)求點(diǎn)C的坐標(biāo),并用含a,t的代數(shù)式表示b;
(3)當(dāng)t=1時(shí),連接OD,若此時(shí)拋物線與線段OD只有唯一的公共點(diǎn)O,求a的取值范圍;
(4)當(dāng)拋物線開(kāi)口向上,對(duì)稱軸是直線,頂點(diǎn)隨著t的增大向上移動(dòng)時(shí),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,在平面直角坐標(biāo)系中,點(diǎn)A、C分別在y軸和x軸上,AB∥x軸,sinC=,點(diǎn)P從O點(diǎn)出發(fā),沿邊OA、AB、BC勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿邊CO勻速運(yùn)動(dòng)。點(diǎn)P與點(diǎn)Q同時(shí)出發(fā),其中一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s),△CPQ的面積為S(cm2), 已知S與t之間的函數(shù)關(guān)系如圖2中曲線段OE、線段EF與曲線段FG給出.
(1)點(diǎn)P的運(yùn)動(dòng)速度為     cm/s, 點(diǎn)B、C的坐標(biāo)分別為     ,     ;
(2)求曲線FG段的函數(shù)解析式;
(3)當(dāng)t為何值時(shí),△CPQ的面積是四邊形OABC的面積的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

拋物線軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,其中點(diǎn)B的坐標(biāo)為.
(1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;]
(2)將(1)中的拋物線沿對(duì)稱軸向上平移,使其頂點(diǎn)M落在線段BC上,記該拋物線為G,求拋物線G所對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)將線段BC平移得到線段(B的對(duì)應(yīng)點(diǎn)為,C的對(duì)應(yīng)點(diǎn)為),使其經(jīng)過(guò)(2)中所得拋物線G的頂點(diǎn)M,且與拋物線G另有一個(gè)交點(diǎn)N,求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知拋物線 (b,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,–1),C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.
(1)如圖,若該拋物線過(guò)A,B兩點(diǎn),求b,c的值;
(2)平移(1)中的拋物線,使頂點(diǎn)P在直線AC上滑動(dòng),且與直線AC交于另一點(diǎn)Q.
①點(diǎn)M在直線AC下方,且為平移前(1)中的拋物線上的點(diǎn),當(dāng)以M,P,Q三點(diǎn)為頂點(diǎn)的三角形是以PQ為腰的等腰直角三角形時(shí),求點(diǎn)M的坐標(biāo);
②取BC的中點(diǎn)N,連接NP,BQ.當(dāng)取最大值時(shí),點(diǎn)Q的坐標(biāo)為_(kāi)_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,拋物線y=-x2+bx+c的頂點(diǎn)為Q,與x軸交于A(-1,0)、B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及其頂點(diǎn)Q的坐標(biāo);
(2)在該拋物線的對(duì)稱軸上求一點(diǎn)P,使得△PAC的周長(zhǎng)最小,請(qǐng)?jiān)趫D中畫出點(diǎn)P的位置,并求點(diǎn)P的坐標(biāo);
(3)如圖2,若點(diǎn)D是第一象限拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)D作DE⊥x軸,垂足為E.
①有一個(gè)同學(xué)說(shuō):“在第一象限拋物線上的所有點(diǎn)中,拋物線的頂點(diǎn)Q與x軸相距最遠(yuǎn),所以當(dāng)點(diǎn)D運(yùn)動(dòng)至點(diǎn)Q時(shí),折線D-E-O的長(zhǎng)度最長(zhǎng)”,這個(gè)同學(xué)的說(shuō)法正確嗎?請(qǐng)說(shuō)明理由.
②若DE與直線BC交于點(diǎn)F.試探究:四邊形DCEB能否為平行四邊形?若能,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);若不能,請(qǐng)簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案