【題目】如圖,已知ABC,C=90,AC<BC,DBC上一點,且到A,B兩點的距離相等.

(1)用直尺和圓規(guī),作出點D的位置(不寫作法,保留作圖痕跡);

(2)連結(jié)AD,若∠B=37°,則∠CAD=_________.

【答案】(1)作圖見解析;(2)16.

【解析】試題分析:(1)作線段AB的垂直平分線,交BC于一點,這點就是D點位置;(2)根據(jù)直角三角形兩銳角互余可得∠BAC的度數(shù),再根據(jù)等邊對等角可得∠DAB的度數(shù),進而可得答案.

(1)如圖所示:

點D即為所求;

(2)∵△ABC,∠C=90°,∠B=37°,

∴∠BAC=53°,

∵DE垂直平分AB,

∴AD=BD,

∴∠B=∠DAB=37°,
∴∠CAD=53°-37°=16°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場出售茶壺和茶杯,茶壺每只15元,茶杯每只3元,商店規(guī)定:購一只茶壺贈送一只茶杯,某人共付款180元,共得茶壺、茶杯共30只(含贈送茶杯),則此人購得茶壺的只數(shù)是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定ABC≌△ADC的是( 。

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個盒子的側(cè)面為長方形,底面為等邊三角形.

1)每個盒子需______個長方形,______個等邊三角形;

2)硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用).

現(xiàn)有相同規(guī)格的 19 張正方形硬紙板,其中的 x 張按方法一裁剪,剩余的按方法二裁剪.

①用含 x 的代數(shù)式分別表示裁剪出的側(cè)面?zhèn)數(shù),底面?zhèn)數(shù);

②若裁剪出的側(cè)面和底面恰好全部用完,求能做多少個盒子.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1已知如圖1,等腰直角三角形ABC,B=90°,AD是∠BAC的外角平分線,CB邊的延長線于點D

求證BD=AB+AC

2)對于任意三角形ABCABC=2∠C,AD是∠BAC的外角平分線,CB邊的延長線于點D,如圖2,請你寫出線段AC、ABBD之間的數(shù)量關(guān)系并加以證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若(a3)與(2a3)互為相反數(shù),則a的值為(

A.3B.1C.2D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,ABC的頂點均在格點上C的坐標為4,-1).

1請以y軸為對稱軸畫出與△ABC對稱的△A1B1C1,并直接寫出點A1B1、C1的坐標;

2ABC的面積是

3Pa+1,b-1與點C關(guān)于x軸對稱,a= b=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀兩名同學對下題的解答過程.一個等腰三角形的周長為28 cm,其中一邊長為8 cm,則這個三角形另外兩邊的長分別是多少?

李明說應這樣解:設(shè)腰長為x cm,則2x+8=28,解得x=10,所以這個三角形的另外兩邊的長均為10 cm.張鋼說應這樣解:設(shè)底邊長為x cm,則2×8+x=28,解得x=12,所以這

個三角形的另外兩邊的長分別為8 cm,12 cm.

試判斷李明與張鋼兩人的解答過程是否正確,若正確,請寫出判斷的依據(jù);若不正確,請你寫出正確的解答過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游樂場部分平面圖如圖所示,C,E,A在同一直線上D,E,B在同一直線上,測得A處與E處的距離為80 m,C處與D處的距離為34 mC90°,ABE90°BAE30°.( ≈1.4, ≈1.7)

(1)求旋轉(zhuǎn)木馬E處到出口B處的距離;

(2)求海洋球D處到出口B處的距離(結(jié)果保留整數(shù))

查看答案和解析>>

同步練習冊答案