【題目】
(1)如圖1,正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,∠EAF=45°,延長(zhǎng)CD到點(diǎn)G,使DG=BE,連結(jié)EF,AG.求證:EF=FG.
(2)如圖,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點(diǎn)M,N在邊BC上,且∠MAN=45°,若BM=1,CN=3,求MN的長(zhǎng).

【答案】
(1)證明:在正方形ABCD中,

∠ABE=∠ADG,AD=AB,

在△ABE和△ADG中,

∴△ABE≌△ADG(SAS),

∴∠BAE=∠DAG,AE=AG,

∴∠EAG=90°,

在△FAE和△GAF中,

,

∴△FAE≌△GAF(SAS),

∴EF=FG;


(2)解:如圖,過(guò)點(diǎn)C作CE⊥BC,垂足為點(diǎn)C,截取CE,使CE=BM.連接AE、EN.

∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.

∵CE⊥BC,∴∠ACE=∠B=45°.

在△ABM和△ACE中,

∴△ABM≌△ACE(SAS).

∴AM=AE,∠BAM=∠CAE.

∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.

于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.

在△MAN和△EAN中,

∴△MAN≌△EAN(SAS).

∴MN=EN.

在Rt△ENC中,由勾股定理,得EN2=EC2+NC2

∴MN2=BM2+NC2

∵BM=1,CN=3,

∴MN2=12+32

∴MN=


【解析】(1)證△ADG≌△ABE,△FAE≌△FAG,根據(jù)全等三角形的性質(zhì)求出即可;(2)過(guò)點(diǎn)C作CE⊥BC,垂足為點(diǎn)C,截取CE,使CE=BM.連接AE、EN.通過(guò)證明△ABM≌△ACE(SAS)推知全等三角形的對(duì)應(yīng)邊AM=AE、對(duì)應(yīng)角∠BAM=∠CAE;然后由等腰直角三角形的性質(zhì)和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的對(duì)應(yīng)邊MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識(shí),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角;正方形的一條對(duì)角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線(xiàn)與邊的夾角是45o;正方形的兩條對(duì)角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為1的小正方形組成的方格紙中,若多邊形的各頂點(diǎn)都在方格紙的格點(diǎn)(橫豎格子線(xiàn)的交錯(cuò)點(diǎn))上,這樣的多邊形稱(chēng)為格點(diǎn)多邊形.記格點(diǎn)多邊形內(nèi)的格點(diǎn)數(shù)為a,邊界上的格點(diǎn)數(shù)為b,則格點(diǎn)多邊形的面積可表示為S=ma+nb﹣1,其中m,n為常數(shù).

(1)在下面的方格中各畫(huà)出一個(gè)面積為6的格點(diǎn)多邊形,依次為三角形、平行四邊形(非菱形)、菱形;
(2)利用(1)中的格點(diǎn)多邊形確定m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方成同學(xué)看到一則材料:甲開(kāi)汽車(chē),乙騎自行車(chē)從M地出發(fā)沿一條公路勻速前往N地.設(shè)乙行駛的時(shí)間為t(h),甲乙兩人之間的距離為y(km),y與t的函數(shù)關(guān)系如圖1所示. 方成思考后發(fā)現(xiàn)了如圖1的部分正確信息:乙先出發(fā)1h;甲出發(fā)0.5小時(shí)與乙相遇.
請(qǐng)你幫助方成同學(xué)解決以下問(wèn)題:

(1)分別求出線(xiàn)段BC,CD所在直線(xiàn)的函數(shù)表達(dá)式;
(2)當(dāng)20<y<30時(shí),求t的取值范圍;
(3)分別求出甲,乙行駛的路程S , S與時(shí)間t的函數(shù)表達(dá)式,并在圖2所給的直角坐標(biāo)系中分別畫(huà)出它們的圖象;
(4)丙騎摩托車(chē)與乙同時(shí)出發(fā),從N地沿同一公路勻速前往M地,若丙經(jīng)過(guò) h與乙相遇,問(wèn)丙出發(fā)后多少時(shí)間與甲相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】研究幾何圖形,我們往往先給出這類(lèi)圖形的定義,再研究它的性質(zhì)和判定. 定義:六個(gè)內(nèi)角相等的六邊形叫等角六邊形.

(1)研究性質(zhì) ①如圖1,等角六邊形ABCDEF中,三組正對(duì)邊AB與DE,BC與EF,CD與AF分別有什么位置關(guān)系?證明你的結(jié)論.
②如圖2,等角六邊形ABCDEF中,如果有AB=DE,則其余兩組正對(duì)邊BC與EF,CD與AF相等嗎?證明你的結(jié)論.
③如圖3,等角六邊形ABCDEF中,如果三條正對(duì)角線(xiàn)AD,BE,CF相交于一點(diǎn)O,那么三組正對(duì)邊AB與DE,BC與EF,CD與AF分別有什么數(shù)量關(guān)系?證明你的結(jié)論.
(2)探索判定 三組正對(duì)邊分別平行的六邊形,至少需要幾個(gè)內(nèi)角為120°,才能保證六邊形一定是等角六邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車(chē),B騎電動(dòng)車(chē),圖中DE,OC分別表示A,B離開(kāi)甲地的路程s(km)與時(shí)間t(h)的函數(shù)關(guān)系的圖象,根據(jù)圖象解答下列問(wèn)題.
(1)A比B后出發(fā)幾個(gè)小時(shí)?B的速度是多少?
(2)在B出發(fā)后幾小時(shí),兩人相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(﹣ 2+|﹣4|×21﹣( ﹣1)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半徑為6cm的⊙O中,C、D為直徑AB的三等分點(diǎn),點(diǎn)E、F分別在AB兩側(cè)的半圓上,∠BCE=∠BDF=60°,連接AE、BF,則圖中兩個(gè)陰影部分的面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,點(diǎn)D、E分別在邊AB、AC上,聯(lián)結(jié)DE,那么下列條件中不能判斷△ADE和△ABC相似的是(
A.DE∥BC
B.∠AED=∠B
C.AE:AD=AB:AC
D.AE:DE=AC:BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究:如圖,已知拋物線(xiàn)y=﹣x2+2x+3的圖象與x軸交于點(diǎn)A,B(A在B的右側(cè)),與y軸交于點(diǎn)C,對(duì)稱(chēng)軸與拋物線(xiàn)交于點(diǎn)D,與x軸交于點(diǎn)E.

(1)求點(diǎn)A,B,C,D的坐標(biāo);
(2)求出△ACD的外心坐標(biāo);
(3)將△BCE沿x軸的正方向每秒向右平移1個(gè)單位,當(dāng)點(diǎn)E移動(dòng)到點(diǎn)A時(shí)停止運(yùn)動(dòng),若△BCE與△ADE重合部分的面積為S,運(yùn)動(dòng)時(shí)間為t(s),請(qǐng)直接寫(xiě)出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案