【題目】如圖,在RtABC中,∠ACB=90,點D、E分別是邊AB、AC的中點,延長DEF,使得AF//CD,連接BF、CF。求證:四邊形AFCD是菱形。

【答案】見解析

【解析】

證明△AFE≌△CDE,根據(jù)全等三角形的性質可得AF=CD ,再由一組對邊平行且相等的四邊形為平行四邊形可判定四邊形 AFCD為平行四邊形,再證對角線ACDF ,即可判定平行四邊形AFCD為菱形.

∵點D、E分別是邊AB、AC的中點,

∴DE ∥BC,AE=EC,

∵∠ACB=90

∴∠ACB=∠AEF=∠CED=90,

∵AF//CD,

∴∠CDE=∠AFE,

△AFE△CDE中,

AE=EC,∠AEF=∠CED=90,∠CDE=∠AFE,

∴△AFE≌△CDE,

∴AF=CD ,

四邊形AFCD為平行四邊形,

∵∠CED=90,

∴ACDF ,

平行四邊形AFCD為菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAB的角平分線與∠ABC的外角平分線相交于點P,且∠D+C=200°,則∠P=( )

A. 10 ° B .20 ° C .30° D.40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的OBC于點D,點EAC的延長線上,且CBE=BAC

(1)求證:BEO的切線;

(2)若ABC=65°,AB=6,求劣弧AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】過三角形一個頂點的直線,把原三角形分割成兩個三角形,要求分得的兩個三角形中至少有一個是等腰三角形.

1)如果原三角形是頂點為108°的等腰三角形,這樣的直線有________條.

2)如果原三角形是等腰直角三角形,這樣的直線有________條.

3)如果原三角形是有一個銳角是30°的直角三角形,這樣的直線有________條.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直徑,上一點,于點,弦交于點,過點,使,的延長線于點.過點的切線交的延長線于點

(1)求證:的切線;

(2),求弧的長;

(3),求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某草莓采摘園元旦至春節(jié)期間推出了甲、乙兩種優(yōu)惠方案.

甲種優(yōu)惠方案:游客進園需要購買40元的門票(每個家庭購買一張門票),采摘的草莓均按定價的六折賣給采摘游客;

乙種優(yōu)惠方案:游客進園不需購買門票,采摘的草莓按定價出售,但超過一定重量后,超過的部分打折賣給采摘的游客.

優(yōu)惠期間,設某游客(或一個家庭)采摘草莓的重量為xkg),選用甲種優(yōu)惠方案采摘所需的總費用為y1(元),選用乙種優(yōu)惠方案采摘所需的總費用為y2(元).已知1,y2與采摘重量xkg)之間的函數(shù)關系如圖所示.

1)分別求y1,y2x之間的函數(shù)關系式;

2)求點A的坐標,并解釋坐標的實際意義;

3)采摘重量x為多少時,游客選用甲種優(yōu)惠方案采摘更合算.(直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知為銳角,下列結論:①②如果,那么;③如果,那么;,正確的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果店銷售一種水果的成本價是/千克.在銷售過程中發(fā)現(xiàn),當這種水果的價格定在/千克時,每天可以賣出千克.在此基礎上,這種水果的單價每提高/千克,該水果店每天就會少賣出千克.

若該水果店每天銷售這種水果所獲得的利潤是元,則單價應定為多少?

在利潤不變的情況下,為了讓利于顧客,單價應定為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

實驗數(shù)據(jù)顯示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)隨時間的增加逐步增高達到峰值,之后血液中酒精含量隨時間的增加逐漸降低.

小明根據(jù)相關數(shù)據(jù)和學習函數(shù)的經驗,對血液中酒精含量隨時間變化的規(guī)律進行了探究,發(fā)現(xiàn)血液中酒精含量y是時間x的函數(shù),其中y表示血液中酒精含量(毫克/百毫升),x表示飲酒后的時間(小時).

下表記錄了6小時內11個時間點血液中酒精含量y(毫克/百毫升)隨飲酒后的時間x(小時)(x>0)的變化情況.

飲酒后的時間x(小時)

1

2

3

4

5

6

血液中酒精含量y

(毫克/百毫升)

150

200

150

45

下面是小明的探究過程,請補充完整:

(1)如圖,在平面直角坐標系xOy中,以上表中各對數(shù)值為坐標描點,圖中已給出部分點,請你描出剩余的點,畫出血液中酒精含量y隨時間x變化的函數(shù)圖象;

(2)觀察表中數(shù)據(jù)及圖象可發(fā)現(xiàn)此函數(shù)圖象在直線x兩側可以用不同的函數(shù)表達式表示,請你任選其中一部分寫出表達式;

(3)按國家規(guī)定,車輛駕駛人員血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學模型,假設某駕駛員晚上20:00在家喝完250毫升低度白酒,第二天早上6:30能否駕車去上班?請說明理由.

查看答案和解析>>

同步練習冊答案