如圖,直線y=-x+3與x軸、y軸分別交于點B、C,拋物線y=-x2+bx+c經(jīng)過點B、C,點A是拋物線與x軸的另一個交點.
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)若P是拋物線上一點,且S△ABP=
1
2
S△ABC,這樣的點P有______個.
(1)∵直線y=-x+3經(jīng)過B、C兩點,∴B(3,0),C(0,3);
已知拋物線經(jīng)過B、C兩點,則有:
-9+3b+c=0
c=3
,
解得
b=2
c=3

∴拋物線的解析式為:y=-x2+2x+3;

(2)令(1)所得的拋物線中y=0,得-x2+2x+3=0,
解得x=-1,x=3;
∴A(-1,0),
又∵B(3,0),C(0,3),
∴AB=4,OC=3;
S△ABC=
1
2
AB•OC=
1
2
×4×3=6;

(3)∵S△ABC=
1
2
AB•OC,S△ABP=
1
2
AB•|yP|,且S△ABP=
1
2
S△ABC,
∴|yP|=
1
2
OC=1.5,
即P點的縱坐標(biāo)為±1.5;
由函數(shù)的圖象知,符合條件的P點共有4個.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知過坐標(biāo)原點的拋物線經(jīng)過A(x1,0),B(x2,3)兩點,且x1、x2是方程x2+5x+6=0兩根(x1>x2),拋物線頂點為C.
(1)求拋物線的解析式;
(2)若點D在拋物線上,點E在拋物線的對稱軸上,且以A、O、D、E為頂點的四邊形是平行四邊形,求點E的坐標(biāo);
(3)P是拋物線上的動點,過點P作PM⊥x軸,垂足為M,是否存在點P使得以點P、M、O為頂點的三角形與△BOC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,點A是直線y=kx(k>0,且k為常數(shù))上一動點,以A為頂點的拋物線y=(x-h)2+m交直線y=kx于另一點E,交y軸于點F,拋物線的對稱軸交x軸于點B,交直線EF于點C.(點A,E,F(xiàn)兩兩不重合)
(1)請寫出h與m之間的關(guān)系;(用含的k式子表示)
(2)當(dāng)點A運動到使EF與x軸平行時(如圖2),求線段AC與OF的比值;
(3)當(dāng)點A運動到使點F的位置最低時(如圖3),求線段AC與OF的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=
1
2
x2+(k+
1
2
)x+(k+1)(k為常數(shù))與x軸交于A(x1,0)、B(x2,0)(x1<0<x2)兩點,與y軸交于C點,且滿足(OA+OB)2=OC2+16.
(1)求此拋物線的解析式;
(2)設(shè)M、N是拋物線在x軸上方的兩點,且到x軸的距離均為1,點P是拋物線的頂點,問:過M、N、C三點的圓與直線CP是否只有一個公共點C?試證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,拋物線y=ax2-3ax+b經(jīng)過A(-1,0),C(3,2)兩點,與y軸交于點D,與x軸交于另一點B.
(1)求此拋物線的解析式;
(2)若直線y=kx-1(k≠0)將四邊形ABCD面積二等分,求k的值;
(3)如圖2,過點E(1,-1)作EF⊥x軸于點F,將△AEF繞平面內(nèi)某點旋轉(zhuǎn)180°后得△MNQ(點M,N,Q分別與點A,E,F(xiàn)對應(yīng)),使點M,N在拋物線上,求點M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

學(xué)校要建造一個圓形噴水池,在水池中央垂直于水面安裝一個花形柱子OA.O恰好在水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下.且在過OA的任意平面上的拋物線如圖1所示,建立平面直角坐標(biāo)系(如圖2),水流噴出的高度y(m)與水面距離x(m)之間的函數(shù)關(guān)系式是y=-x2+
5
2
x+
3
2
,請回答下列問題:
(1)花形柱子OA的高度;
(2)若不計其它因素,水池的半徑至少要多少米,才能使噴出的水不至于落在池外?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,二次函數(shù)y=a(x-2)2-1圖象的頂點為P,與x軸交點為A、B,與y軸交點為C,連接BP并延長交y軸于點D.
(1)寫出點P的坐標(biāo);
(2)連接AP,如果△APB為等腰直角三角形,求a的值及點C、D的坐標(biāo);
(3)在(2)的條件下,連接BC、AC、AD,點E(0,b)在線段CD(端點C、D除外)上,將△BCD繞點E逆時針方向旋轉(zhuǎn)90°,得到一個新三角形.設(shè)該三角形與△ACD重疊部分的面積為S,根據(jù)不同情況,分別用含b的代數(shù)式表示S,選擇其中一種情況給出解答過程,其它情況直接寫出結(jié)果;判斷當(dāng)b為何值時,重疊部分的面積最大寫出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=6cm,AD=3cm,點E在邊DC上,且DE=4cm.動點P從點A開始沿著A?B?C?E的路線以2cm/s的速度移動,動點Q從點A開始沿著AE以1cm/s的速度移動,當(dāng)點Q移動到點E時,點P停止移動.若點P、Q同時從點A同時出發(fā),設(shè)點Q移動時間為t(s),P、Q兩點運動路線與線段PQ圍成的圖形面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=9-4x2的最大值是______.

查看答案和解析>>

同步練習(xí)冊答案