【題目】若順次連接四邊形ABCD各邊的中點所得四邊形是矩形,則四邊形ABCD一定是( )
A.矩形 B.菱形
C.對角線互相垂直的四邊形 D.對角線相等的四邊形
【答案】C
【解析】
試題分析:此題要根據(jù)矩形的性質(zhì)和三角形中位線定理求解;首先根據(jù)三角形中位線定理知:所得四邊形的對邊都平行且相等,那么其必為平行四邊形,若所得四邊形是矩形,那么鄰邊互相垂直,故原四邊形的對角線必互相垂直,由此得解.
解:已知:如右圖,四邊形EFGH是矩形,且E、F、G、H分別是AB、BC、CD、AD的中點,求證:四邊形ABCD是對角線垂直的四邊形.
證明:由于E、F、G、H分別是AB、BC、CD、AD的中點,
根據(jù)三角形中位線定理得:EH∥FG∥BD,EF∥AC∥HG;
∵四邊形EFGH是矩形,即EF⊥FG,
∴AC⊥BD,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】將拋物線y=2x2+2向右平移1個單位后所得拋物線的解析式是( )
A.y=2x2+3
B.y=2x2+1
C.y=2(x+1)2+2
D.y=2(x﹣1)2+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形具有而平行四邊形不一定具有的性質(zhì)是( )
A.兩組對邊分別平行
B.兩組對角分別相等
C.對角線互相平分
D.對角線互相垂直
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,正比例函數(shù)y=x的圖象經(jīng)過點A,點A的縱坐標為4,反比例函數(shù)y=的圖象也經(jīng)過點A,第一象限內(nèi)的點B在這個反比例函數(shù)的圖象上,過點B作BC∥x軸,交y軸于點C,且AC=AB.求:
(1)這個反比例函數(shù)的解析式;
(2)直線AB的表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com