如圖在△ABC中,BF、CF是角平分線,DE∥BC,分別交AB、AC于點(diǎn)D、E,DE經(jīng)過點(diǎn)F.結(jié)論:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;

③△ADE的周長=AB+AC;④BF=CF.其中正確的是________.(填序號)

答案:①②③
解析:

  解析:∵DEBC

  ∴∠DFB=∠FBC,∠EFC=∠FCB

  BF是∠ABC的平分線,CF是∠ACB的平分線,

  ∴∠FBC=∠DFB,∠FCE=∠FCB

  ∵∠DBF=∠DFB,∠EFC=∠ECF,

  ∴△DFB,△FEC都是等腰三角形.

  DFDB,FEEC,即有DEDFFEDBEC,

  ∴△ADE的周長ADAEDEADAEDBECABAC

  綜上所述,命題①②③正確.

  故答案為①②③.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖在△ABC中,∠ACB=90°,CD是邊AB上的高.那么圖中與∠A相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在△ABC中,∠ABC=50°,∠ACB=75°,點(diǎn)O是內(nèi)心,則∠BOC的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖在△ABC中,AD是BC邊上的高線,CE是AB邊上的中線,DG平分∠CDE,DC=AE,
求證:CG=EG.
證明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB邊上的中線
∴E是AB的中點(diǎn)
∴DE=
1
2
AB
1
2
AB
(直角三角形斜邊上的中線等于斜邊的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三線合一
等腰三角形三線合一

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的兩點(diǎn),則圖中陰影部分的面積是
20
20

查看答案和解析>>

同步練習(xí)冊答案