【題目】如圖,在中,,、的兩個外角,平分,平分

求證:四邊形是菱形.

,連接,求長.

【答案】(1)見解析;(2)

【解析】

1)由在△ABC,AB=ACB=60°,可得△ABC是等邊三角形,又由AD平分∠FAC,CD平分∠ECA,可得△ACD是等邊三角形繼而證得結(jié)論;

2)由四邊形ABCD是菱形,B=60°,易得ACBD互相垂直且平分,然后由含30°角的直角三角形的性質(zhì),求得答案

1∵在△ABC,AB=AC,B=60°,∴△ABC是等邊三角形,∴∠BAC=ACB=60°,AB=BC=AC,∴∠FAC=ACE=120°.

AD平分∠FAC,CD平分∠ECA∴∠DAC=DCA=60°,∴△ACD是等邊三角形AD=CD=AC,AB=BC=CD=AD,∴四邊形ABCD是菱形

2∵四邊形ABCD是菱形,且∠ABC=60°,BDAC,ABO=ABC=30°,OA=AB=×2=1,OB==,BD=2OB=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一種合金薄板(其厚度忽略不計),這些薄板的形狀均為正方形,邊長(單位:cm)在550之間,每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)由基礎(chǔ)價和浮動價兩部分組成,其中基礎(chǔ)價與薄板的大小無關(guān),是固定不變的,浮動價與薄板的邊長成正比例,在營銷過程中得到了表格中的數(shù)據(jù).

薄板的邊長(cm)

20

30

出廠價(元/張)

50

70

(1)求一張薄板的出廠價與邊長之間滿足的函數(shù)關(guān)系式;

(2)40cm的薄板,獲得的利潤是26元(利潤=出廠價﹣成本價).

①求一張薄板的利潤與邊長之間滿足的函數(shù)關(guān)系式;

②當(dāng)邊長為多少時,出廠一張薄板獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的等邊三角形的頂點分別在邊,上當(dāng)在邊上運動時,隨之在邊上運動,等邊三角形的形狀保持不變,運動過程中,點到點的最大距離為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點P,Q分別是等邊△ABCAB,BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQCP交于點M.

1)求證:△ABQCAP;

2)如圖1,當(dāng)點P,Q分別在AB,BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數(shù).

3)如圖2,若點P,Q在分別運動到點B和點C后,繼續(xù)在射線AB,BC上運動,直線AQ,CP交點為M,則∠QMC= 度.(直接填寫度數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°B=30°,以A為圓心,任意長為半徑畫弧分別交ABAC于點MN,再分別以MN為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是

ADBAC的平分線;②∠ADC=60°;DAB的中垂線上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點坐標(biāo)為,點坐標(biāo)為,動點從點開始沿以每秒個單位長度的速度向點移動,動點從點開始沿以每秒個單位長度的速度向點移動.如果、分別從、同時出發(fā),用(秒)表示移動的時間,那么:

當(dāng)為何值時,四邊形是梯形,此時梯形的面積是多少?

當(dāng)為何值時,以點、為頂點的三角形與相似?

若設(shè)四邊形的面積為,試寫出的函數(shù)關(guān)系式,并求出取何值時,四邊形的面積最?

軸上是否存在點,使點在移動過程中,以、、為頂點的四邊形的面積是一個常數(shù)?若存在請求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是直徑為的圓內(nèi)接等腰三角形,如果此三角形的底邊,則的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】泰勒斯是古希臘哲學(xué)家,相傳他利用三角形全等的方法求出岸上一點到海中一艘船的距離.如圖,B是觀察點,船AB的正前方,過BAB的垂線,在垂線上截取任意長BD,CBD的中點,觀察者從點D沿垂直于BDDE方向走,直到點E、船A和點C在一條直線上,那么△ABC≌△EDC,從而量出DE的距離即為船離岸的距離AB,這里判定△ABC≌△EDC的方法是( 。

A.SASB.ASAC.AASD.SSS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知ABC中,AB=AC=BC=10厘米,M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度是1厘米/秒的速度,點N的速度是2厘米/秒,當(dāng)點N第一次到達B點時,M、N同時停止運動.

1M、N同時運動幾秒后,MN兩點重合?

2MN同時運動幾秒后,可得等邊三角形AMN?

3MNBC邊上運動時,能否得到以MN為底邊的等腰AMN,如果存在,請求出此時MN運動的時間?

查看答案和解析>>

同步練習(xí)冊答案